These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 26840619)

  • 1. Reduced Uranium Phases Produced from Anaerobic Reaction with Nanoscale Zerovalent Iron.
    Tsarev S; Collins RN; Fahy A; Waite TD
    Environ Sci Technol; 2016 Mar; 50(5):2595-601. PubMed ID: 26840619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immobilization of uranium(VI) in a cementitious matrix with nanoscale zerovalent iron (NZVI).
    Sihn Y; Bae S; Lee W
    Chemosphere; 2019 Jan; 215():626-633. PubMed ID: 30347357
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous adsorption and reduction of U(VI) on reduced graphene oxide-supported nanoscale zerovalent iron.
    Sun Y; Ding C; Cheng W; Wang X
    J Hazard Mater; 2014 Sep; 280():399-408. PubMed ID: 25194557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bicarbonate on aging and reactivity of nanoscale zerovalent iron (nZVI) toward uranium removal.
    Hua Y; Wang W; Huang X; Gu T; Ding D; Ling L; Zhang WX
    Chemosphere; 2018 Jun; 201():603-611. PubMed ID: 29544215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uranium(VI) reduction by iron(II) monosulfide mackinawite.
    Hyun SP; Davis JA; Sun K; Hayes KF
    Environ Sci Technol; 2012 Mar; 46(6):3369-76. PubMed ID: 22316012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical transformations during aging of zerovalent iron nanoparticles in the presence of common groundwater dissolved constituents.
    Reinsch BC; Forsberg B; Penn RL; Kim CS; Lowry GV
    Environ Sci Technol; 2010 May; 44(9):3455-61. PubMed ID: 20380376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uranium(VI) removal by nanoscale zerovalent iron in anoxic batch systems.
    Yan S; Hua B; Bao Z; Yang J; Liu C; Deng B
    Environ Sci Technol; 2010 Oct; 44(20):7783-9. PubMed ID: 20858002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of magnetite stoichiometry on U(VI) reduction.
    Latta DE; Gorski CA; Boyanov MI; O'Loughlin EJ; Kemner KM; Scherer MM
    Environ Sci Technol; 2012 Jan; 46(2):778-86. PubMed ID: 22148359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. XANES and EXAFS investigation of uranium incorporation on nZVI in the presence of phosphate.
    Qiu M; Wang M; Zhao Q; Hu B; Zhu Y
    Chemosphere; 2018 Jun; 201():764-771. PubMed ID: 29550570
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): formation of UO2 nanoparticles.
    O'Loughlin EJ; Kelly SD; Cook RE; Csencsits R; Kemner KM
    Environ Sci Technol; 2003 Feb; 37(4):721-7. PubMed ID: 12636270
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale zero-valent iron/magnetite carbon composites for highly efficient immobilization of U(VI).
    Lv Z; Yang S; Chen L; Alsaedi A; Hayat T; Chen C
    J Environ Sci (China); 2019 Feb; 76():377-387. PubMed ID: 30528030
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water.
    Crane RA; Dickinson M; Popescu IC; Scott TB
    Water Res; 2011 Apr; 45(9):2931-42. PubMed ID: 21470652
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of U(VI) with titanium-substituted magnetite: influence of Ti on U(IV) speciation.
    Latta DE; Pearce CI; Rosso KM; Kemner KM; Boyanov MI
    Environ Sci Technol; 2013 May; 47(9):4121-30. PubMed ID: 23597442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uranium Redox Transformations after U(VI) Coprecipitation with Magnetite Nanoparticles.
    Pidchenko I; Kvashnina KO; Yokosawa T; Finck N; Bahl S; Schild D; Polly R; Bohnert E; Rossberg A; Göttlicher J; Dardenne K; Rothe J; Schäfer T; Geckeis H; Vitova T
    Environ Sci Technol; 2017 Feb; 51(4):2217-2225. PubMed ID: 28094921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Speciation-dependent microbial reduction of uranium within iron-coated sands.
    Neiss J; Stewart BD; Nico PS; Fendorf S
    Environ Sci Technol; 2007 Nov; 41(21):7343-8. PubMed ID: 18044509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uranium Reduction by Fe(II) in the Presence of Montmorillonite and Nontronite.
    Tsarev S; Waite TD; Collins RN
    Environ Sci Technol; 2016 Aug; 50(15):8223-30. PubMed ID: 27379383
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative remobilization of technetium sequestered by sulfide-transformed nano zerovalent iron.
    Fan D; Anitori RP; Tebo BM; Tratnyek PG; Lezama Pacheco JS; Kukkadapu RK; Kovarik L; Engelhard MH; Bowden ME
    Environ Sci Technol; 2014 Jul; 48(13):7409-17. PubMed ID: 24884124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium.
    Lezama-Pacheco JS; Cerrato JM; Veeramani H; Alessi DS; Suvorova E; Bernier-Latmani R; Giammar DE; Long PE; Williams KH; Bargar JR
    Environ Sci Technol; 2015 Jun; 49(12):7340-7. PubMed ID: 26001126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of simultaneous U(VI) sorption complexes and U(IV) nanoprecipitates on the magnetite (111) surface.
    Singer DM; Chatman SM; Ilton ES; Rosso KM; Banfield JF; Waychunas GA
    Environ Sci Technol; 2012 Apr; 46(7):3811-20. PubMed ID: 22364181
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of Desulfovibrio vulgaris when respiring U(VI) and characterization of biogenic uraninite.
    Zhou C; Vannela R; Hyun SP; Hayes KF; Rittmann BE
    Environ Sci Technol; 2014 Jun; 48(12):6928-37. PubMed ID: 24871825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.