These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 26840725)

  • 1. Role of Electroosmosis in the Permeation of Neutral Molecules: CymA and Cyclodextrin as an Example.
    Bhamidimarri SP; Prajapati JD; van den Berg B; Winterhalter M; Kleinekathöfer U
    Biophys J; 2016 Feb; 110(3):600-611. PubMed ID: 26840725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in Salt Concentration Modify the Translocation of Neutral Molecules through a ΔCymA Nanopore in a Non-monotonic Manner.
    Prajapati JD; Pangeni S; Aksoyoglu MA; Winterhalter M; Kleinekathöfer U
    ACS Nano; 2022 May; 16(5):7701-7712. PubMed ID: 35435659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-Peptide Permeation Through a Membrane Channel: Understanding Protamine Translocation Through CymA from Klebsiella Oxytoca*.
    Pangeni S; Prajapati JD; Bafna J; Nilam M; Nau WM; Kleinekathöfer U; Winterhalter M
    Angew Chem Int Ed Engl; 2021 Apr; 60(15):8089-8094. PubMed ID: 33580541
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Outer-membrane translocation of bulky small molecules by passive diffusion.
    van den Berg B; Prathyusha Bhamidimarri S; Dahyabhai Prajapati J; Kleinekathöfer U; Winterhalter M
    Proc Natl Acad Sci U S A; 2015 Jun; 112(23):E2991-9. PubMed ID: 26015567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing driving forces in aerolysin and α-hemolysin biological nanopores: electrophoresis versus electroosmosis.
    Boukhet M; Piguet F; Ouldali H; Pastoriza-Gallego M; Pelta J; Oukhaled A
    Nanoscale; 2016 Nov; 8(43):18352-18359. PubMed ID: 27762420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanopore Passport Control for Substrate-Specific Translocation.
    Vikraman D; Satheesan R; Kumar KS; Mahendran KR
    ACS Nano; 2020 Feb; 14(2):2285-2295. PubMed ID: 31976649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electroosmosis through α-Hemolysin That Depends on Alkali Cation Type.
    Piguet F; Discala F; Breton MF; Pelta J; Bacri L; Oukhaled A
    J Phys Chem Lett; 2014 Dec; 5(24):4362-7. PubMed ID: 26273988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Properties of a cyclodextrin-specific, unusual porin from Klebsiella oxytoca.
    Pajatsch M; Andersen C; Mathes A; Böck A; Benz R; Engelhardt H
    J Biol Chem; 1999 Aug; 274(35):25159-66. PubMed ID: 10455198
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-Rectified Current and Fluid Flow in Conical Nanopores.
    Lan WJ; Edwards MA; Luo L; Perera RT; Wu X; Martin CR; White HS
    Acc Chem Res; 2016 Nov; 49(11):2605-2613. PubMed ID: 27689816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electroosmosis Dominates Electrophoresis of Antibiotic Transport Across the Outer Membrane Porin F.
    Bafna JA; Pangeni S; Winterhalter M; Aksoyoglu MA
    Biophys J; 2020 Jun; 118(11):2844-2852. PubMed ID: 32348725
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Voltage-Dependent Transport of Neutral Solutes through Nanopores: A Molecular View.
    Prajapati JD; Kleinekathöfer U
    J Phys Chem B; 2020 Nov; 124(47):10718-10731. PubMed ID: 33175522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electroosmotic flow reversal outside glass nanopores.
    Laohakunakorn N; Thacker VV; Muthukumar M; Keyser UF
    Nano Lett; 2015 Jan; 15(1):695-702. PubMed ID: 25490120
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CymA of Klebsiella oxytoca outer membrane: binding of cyclodextrins and study of the current noise of the open channel.
    Orlik F; Andersen C; Danelon C; Winterhalter M; Pajatsch M; Böck A; Benz R
    Biophys J; 2003 Aug; 85(2):876-85. PubMed ID: 12885635
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling Electroosmosis in Nanopores Without Altering the Nanopore Sensing Region.
    Baldelli M; Di Muccio G; Sauciuc A; Morozzo Della Rocca B; Viola F; Balme S; Bonini A; Maglia G; Chinappi M
    Adv Mater; 2024 Aug; 36(33):e2401761. PubMed ID: 38860821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometrically Induced Selectivity and Unidirectional Electroosmosis in Uncharged Nanopores.
    Di Muccio G; Morozzo Della Rocca B; Chinappi M
    ACS Nano; 2022 Jun; 16(6):8716-8728. PubMed ID: 35587777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrophoretic mobilities of neutral analytes and electroosmotic flow markers in aqueous solutions of Hofmeister salts.
    Křížek T; Kubíčková A; Hladílková J; Coufal P; Heyda J; Jungwirth P
    Electrophoresis; 2014 Mar; 35(5):617-24. PubMed ID: 24338984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electroosmotic Trap Against the Electrophoretic Force Near a Protein Nanopore Reveals Peptide Dynamics During Capture and Translocation.
    Asandei A; Schiopu I; Chinappi M; Seo CH; Park Y; Luchian T
    ACS Appl Mater Interfaces; 2016 May; 8(20):13166-79. PubMed ID: 27159806
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroosmotic flow modulation in capillary electrophoresis by organic cations from ionic liquids.
    Mendes A; Branco LC; Morais C; Simplício AL
    Electrophoresis; 2012 Apr; 33(7):1182-90. PubMed ID: 22539321
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field effect regulation of DNA translocation through a nanopore.
    Ai Y; Liu J; Zhang B; Qian S
    Anal Chem; 2010 Oct; 82(19):8217-25. PubMed ID: 20804162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of the molecular dynamics method for simulations of DNA and ion transport through biological nanopores.
    Wells DB; Bhattacharya S; Carr R; Maffeo C; Ho A; Comer J; Aksimentiev A
    Methods Mol Biol; 2012; 870():165-86. PubMed ID: 22528264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.