These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

70 related articles for article (PubMed ID: 26841719)

  • 21. Multi-generation overgrowth induced synthesis of three-dimensional highly branched palladium tetrapods and their electrocatalytic activity for formic acid oxidation.
    Zhao R; Fu G; Zhou T; Chen Y; Zhu X; Tang Y; Lu T
    Nanoscale; 2014 Mar; 6(5):2776-81. PubMed ID: 24463486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Energy efficiency enhancement of ethanol electrooxidation on Pd-CeO(2)/C in passive and active polymer electrolyte-membrane fuel cells.
    Bambagioni V; Bianchini C; Chen Y; Filippi J; Fornasiero P; Innocenti M; Lavacchi A; Marchionni A; Oberhauser W; Vizza F
    ChemSusChem; 2012 Jul; 5(7):1266-73. PubMed ID: 22517591
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perforated Pd Nanosheets with Crystalline/Amorphous Heterostructures as a Highly Active Robust Catalyst toward Formic Acid Oxidation.
    Zhang LY; Ouyang Y; Wang S; Wu D; Jiang M; Wang F; Yuan W; Li CM
    Small; 2019 Nov; 15(47):e1904245. PubMed ID: 31617305
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of Ag/Pd nanoparticles via reactive micelles as templates and its application to electroless copper deposition.
    Yang CC; Wan CC; Wang YY
    J Colloid Interface Sci; 2004 Nov; 279(2):433-9. PubMed ID: 15464808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Fabrication of a palladium nanoparticle/graphene nanosheet hybrid via sacrifice of a copper template and its application in catalytic oxidation of formic acid.
    Zhao H; Yang J; Wang L; Tian C; Jiang B; Fu H
    Chem Commun (Camb); 2011 Feb; 47(7):2014-6. PubMed ID: 21218219
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An effective Pd-Ni(2)P/C anode catalyst for direct formic acid fuel cells.
    Chang J; Feng L; Liu C; Xing W; Hu X
    Angew Chem Int Ed Engl; 2014 Jan; 53(1):122-6. PubMed ID: 24511636
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reduced graphene oxide (RGO)-supported NiCo₂O₄ nanoparticles: an electrocatalyst for methanol oxidation.
    Das AK; Layek RK; Kim NH; Jung D; Lee JH
    Nanoscale; 2014 Sep; 6(18):10657-65. PubMed ID: 25089926
    [TBL] [Abstract][Full Text] [Related]  

  • 28. One-pot synthesis of carbon-supported dendritic Pd-Au nanoalloys for electrocatalytic ethanol oxidation.
    Kang SW; Lee YW; Kim M; Hong JW; Han SW
    Chem Asian J; 2011 Mar; 6(3):909-13. PubMed ID: 21140400
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Oleylamine-mediated synthesis of Pd nanoparticles for catalytic formic acid oxidation.
    Mazumder V; Sun S
    J Am Chem Soc; 2009 Apr; 131(13):4588-9. PubMed ID: 19281236
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pt nanoparticle netlike-assembly as highly durable and highly active electrocatalyst for oxygen reduction reaction.
    Wang HH; Zhou ZY; Yuan Q; Tian N; Sun SG
    Chem Commun (Camb); 2011 Mar; 47(12):3407-9. PubMed ID: 21340058
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixed-phase PdRu bimetallic structures with high activity and stability for formic acid electrooxidation.
    Wu D; Zheng Z; Gao S; Cao M; Cao R
    Phys Chem Chem Phys; 2012 Jun; 14(22):8051-7. PubMed ID: 22555145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid.
    Yang S; Shen C; Tian Y; Zhang X; Gao HJ
    Nanoscale; 2014 Nov; 6(21):13154-62. PubMed ID: 25251546
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid.
    Lee H; Habas SE; Somorjai GA; Yang P
    J Am Chem Soc; 2008 Apr; 130(16):5406-7. PubMed ID: 18366165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amine-borane assisted synthesis of wavy palladium nanorods on graphene as efficient catalysts for formic acid oxidation.
    Du C; Liao Y; Hua X; Luo W; Chen S; Cheng G
    Chem Commun (Camb); 2014 Nov; 50(85):12843-6. PubMed ID: 25208822
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A theoretical and experimental approach for correlating nanoparticle structure and electrocatalytic activity.
    Anderson RM; Yancey DF; Zhang L; Chill ST; Henkelman G; Crooks RM
    Acc Chem Res; 2015 May; 48(5):1351-7. PubMed ID: 25938976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Reduced graphene oxide supported palladium nanoparticles via photoassisted citrate reduction for enhanced electrocatalytic activities.
    Huang YX; Xie JF; Zhang X; Xiong L; Yu HQ
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15795-801. PubMed ID: 25153308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sonophotodeposition of bimetallic photocatalysts Pd-Au/TiO2 : application to selective oxidation of methanol to methyl formate.
    Colmenares JC; Lisowski P; Łomot D; Chernyayeva O; Lisovytskiy D
    ChemSusChem; 2015 May; 8(10):1676-85. PubMed ID: 25677211
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Simple, readily controllable palladium nanoparticle formation on surface-assembled viral nanotemplates.
    Manocchi AK; Horelik NE; Lee B; Yi H
    Langmuir; 2010 Mar; 26(5):3670-7. PubMed ID: 19919039
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural design and facile synthesis of a highly efficient catalyst for formic acid electrooxidation.
    Wang XM; Wang ME; Zhou DD; Xia YY
    Phys Chem Chem Phys; 2011 Aug; 13(30):13594-7. PubMed ID: 21701741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities.
    Yuan Q; Zhou Z; Zhuang J; Wang X
    Chem Commun (Camb); 2010 Mar; 46(9):1491-3. PubMed ID: 20162158
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.