These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26841797)

  • 21. Nitrogen limitation and slow drying induce desiccation tolerance in conjugating green algae (Zygnematophyceae, Streptophyta) from polar habitats.
    Pichrtová M; Kulichová J; Holzinger A
    PLoS One; 2014; 9(11):e113137. PubMed ID: 25398135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Desmids and biofilms of freshwater wetlands: development and microarchitecture.
    Domozych DS; Domozych CR
    Microb Ecol; 2008 Jan; 55(1):81-93. PubMed ID: 17450460
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microbial assemblages in soil microbial succession after glacial retreat in Svalbard (high arctic).
    Kastovská K; Elster J; Stibal M; Santrůcková H
    Microb Ecol; 2005 Oct; 50(3):396-407. PubMed ID: 16328651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of light regimes on productivity patterns of benthic microbial mats in an antarctic lake: a modeling study.
    Moorhead DL; Wolf CF; Wharton RA
    Limnol Oceanogr; 1997 Nov; 42(7):1561-9. PubMed ID: 11541255
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cyanobacterial life at low O(2): community genomics and function reveal metabolic versatility and extremely low diversity in a Great Lakes sinkhole mat.
    Voorhies AA; Biddanda BA; Kendall ST; Jain S; Marcus DN; Nold SC; Sheldon ND; Dick GJ
    Geobiology; 2012 May; 10(3):250-67. PubMed ID: 22404795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf, Antarctica.
    Jungblut AD; Hawes I; Mountfort D; Hitzfeld B; Dietrich DR; Burns BP; Neilan BA
    Environ Microbiol; 2005 Apr; 7(4):519-29. PubMed ID: 15816929
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Survival of blue-green and green algae under stress conditions.
    Gupta S; Agrawal SC
    Folia Microbiol (Praha); 2006; 51(2):121-8. PubMed ID: 16821721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Endolithic photosynthetic communities within ancient and recent travertine deposits in Yellowstone National Park.
    Norris TB; Castenholz RW
    FEMS Microbiol Ecol; 2006 Sep; 57(3):470-83. PubMed ID: 16907760
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic.
    Varin T; Lovejoy C; Jungblut AD; Vincent WF; Corbeil J
    Appl Environ Microbiol; 2012 Jan; 78(2):549-59. PubMed ID: 22081564
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Soil stabilization by a prokaryotic desert crust: implications for Precambrian land biota.
    Campbell SE
    Orig Life; 1979 Sep; 9(4):335-48. PubMed ID: 116183
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Mats of Microcoleus from alkaliphilic and halophilic communities].
    Gerasimenko LM; Mitiushina LL; Namsaraev BB
    Mikrobiologiia; 2003; 72(1):84-92. PubMed ID: 12698797
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Osmotic stress and recovery in field populations of Zygnema sp. (Zygnematophyceae, Streptophyta) on Svalbard (High Arctic) subjected to natural desiccation.
    Pichrtová M; Hájek T; Elster J
    FEMS Microbiol Ecol; 2014 Aug; 89(2):270-80. PubMed ID: 24476153
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Annual growth layers as proxies of past growth conditions for benthic microbial mats in a perennially ice-covered Antarctic lake.
    Sutherland DL; Hawes I
    FEMS Microbiol Ecol; 2009 Feb; 67(2):279-92. PubMed ID: 19120468
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The environmental physiology of Antarctic terrestrial nematodes: a review.
    Wharton DA
    J Comp Physiol B; 2003 Nov; 173(8):621-8. PubMed ID: 14615899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The conjugating green alga Zygnema sp. (Zygnematophyceae) from the Arctic shows high frost tolerance in mature cells (pre-akinetes).
    Trumhová K; Holzinger A; Obwegeser S; Neuner G; Pichrtová M
    Protoplasma; 2019 Nov; 256(6):1681-1694. PubMed ID: 31292718
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Soil microbial legacies differ following drying-rewetting and freezing-thawing cycles.
    Meisner A; Snoek BL; Nesme J; Dent E; Jacquiod S; Classen AT; Priemé A
    ISME J; 2021 Apr; 15(4):1207-1221. PubMed ID: 33408369
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of repeated freeze-thaw cycles on geographically different populations of the freeze-tolerant worm Enchytraeus albidus (Oligochaeta).
    Fisker KV; Holmstrup M; Malte H; Overgaard J
    J Exp Biol; 2014 Nov; 217(Pt 21):3843-52. PubMed ID: 25214492
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Coupled cryoconite ecosystem structure-function relationships are revealed by comparing bacterial communities in alpine and Arctic glaciers.
    Edwards A; Mur LA; Girdwood SE; Anesio AM; Stibal M; Rassner SM; Hell K; Pachebat JA; Post B; Bussell JS; Cameron SJ; Griffith GW; Hodson AJ; Sattler B
    FEMS Microbiol Ecol; 2014 Aug; 89(2):222-37. PubMed ID: 24433483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Freeze-thaw tolerance and clues to the winter survival of a soil community.
    Walker VK; Palmer GR; Voordouw G
    Appl Environ Microbiol; 2006 Mar; 72(3):1784-92. PubMed ID: 16517623
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Survival of rapidly fluctuating natural low winter temperatures by High Arctic soil invertebrates.
    Convey P; Abbandonato H; Bergan F; Beumer LT; Biersma EM; Bråthen VS; D'Imperio L; Jensen CK; Nilsen S; Paquin K; Stenkewitz U; Svoen ME; Winkler J; Müller E; Coulson SJ
    J Therm Biol; 2015 Dec; 54():111-7. PubMed ID: 26615733
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.