BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 26842428)

  • 1. Selective silicate-directed motility in diatoms.
    Bondoc KG; Heuschele J; Gillard J; Vyverman W; Pohnert G
    Nat Commun; 2016 Feb; 7():10540. PubMed ID: 26842428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selective chemoattraction of the benthic diatom Seminavis robusta to phosphate but not to inorganic nitrogen sources contributes to biofilm structuring.
    V Bondoc KG; Lembke C; Vyverman W; Pohnert G
    Microbiologyopen; 2019 Apr; 8(4):e00694. PubMed ID: 30033670
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of nearshore benthic algae in the Lake Michigan silica cycle.
    Berges JA; Driskill AM; Guinn EJ; Pokrzywinski K; Quinlan J; von Korff B; Young EB
    PLoS One; 2021; 16(8):e0256838. PubMed ID: 34437648
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Verification of the silica deficiency hypothesis based on biogeochemical trends in the aquatic continuum of Lake Biwa-Yodo River-Seto Inland Sea, Japan.
    Harashima A; Kimoto T; Wakabayashi T; Toshiyasu T
    Ambio; 2006 Feb; 35(1):36-42. PubMed ID: 16615698
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decision-making of the benthic diatom Seminavis robusta searching for inorganic nutrients and pheromones.
    Bondoc KGV; Lembke C; Lang SN; Germerodt S; Schuster S; Vyverman W; Pohnert G
    ISME J; 2019 Feb; 13(2):537-546. PubMed ID: 30301945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Water column dissolved silica concentration limits microphytobenthic primary production in intertidal sediments.
    Bohórquez J; Calenti D; García-Robledo E; Papaspyrou S; Jimenez-Arias JL; Gómez-Ramírez EH; Corzo A
    J Phycol; 2019 Jun; 55(3):625-636. PubMed ID: 30671969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of environmental variability on silicate exchange rates between sediment and water in a shallow-water coastal ecosystem, the Seto Inland Sea, Japan.
    Srithongouthai S; Sonoyama Y; Tada K; Montani S
    Mar Pollut Bull; 2003; 47(1-6):10-7. PubMed ID: 12787591
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced silica export in a future ocean triggers global diatom decline.
    Taucher J; Bach LT; Prowe AEF; Boxhammer T; Kvale K; Riebesell U
    Nature; 2022 May; 605(7911):696-700. PubMed ID: 35614245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biogenic silica accumulation in picoeukaryotes: Novel players in the marine silica cycle.
    Churakova Y; Aguilera A; Charalampous E; Conley DJ; Lundin D; Pinhassi J; Farnelid H
    Environ Microbiol Rep; 2023 Aug; 15(4):282-290. PubMed ID: 36992638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diatom elemental and morphological changes in response to iron limitation: a brief review with potential paleoceanographic applications.
    Marchetti A; Cassar N
    Geobiology; 2009 Sep; 7(4):419-31. PubMed ID: 19659798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amorphous silica dissolution kinetics in freshwater environments: Effects of Fe
    Huang L; Parsons CT; Slowinski S; Van Cappellen P
    Sci Total Environ; 2022 Dec; 851(Pt 2):158239. PubMed ID: 36007651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diatom carbon export enhanced by silicate upwelling in the northeast Atlantic.
    Allen JT; Brown L; Sanders R; Moore CM; Mustard A; Fielding S; Lucas M; Rixen M; Savidge G; Henson S; Mayor D
    Nature; 2005 Sep; 437(7059):728-32. PubMed ID: 16193051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of pesticides on freshwater diatoms.
    Debenest T; Silvestre J; Coste M; Pinelli E
    Rev Environ Contam Toxicol; 2010; 203():87-103. PubMed ID: 19957117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revealing the molecular secrets of marine diatoms.
    Falciatore A; Bowler C
    Annu Rev Plant Biol; 2002; 53():109-30. PubMed ID: 12221969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urban groundwater dissolved silica concentrations are elevated due to vertical composition of historic land-filling.
    Maguire TJ; Fulweiler RW
    Sci Total Environ; 2019 Sep; 684():89-95. PubMed ID: 31150879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lake sedimentary biogenic silica from diatoms constitutes a significant global sink for aluminium.
    Liu D; Yuan P; Tian Q; Liu H; Deng L; Song Y; Zhou J; Losic D; Zhou J; Song H; Guo H; Fan W
    Nat Commun; 2019 Oct; 10(1):4829. PubMed ID: 31645556
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Continental erosion and the Cenozoic rise of marine diatoms.
    Cermeño P; Falkowski PG; Romero OE; Schaller MF; Vallina SM
    Proc Natl Acad Sci U S A; 2015 Apr; 112(14):4239-44. PubMed ID: 25831504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biofilm diatom community structure: influence of temporal and substratum variability.
    Patil JS; Anil AC
    Biofouling; 2005; 21(3-4):189-206. PubMed ID: 16371339
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analytical studies on the incorporation of aluminium in the cell walls of the marine diatom Stephanopyxis turris.
    Machill S; Köhler L; Ueberlein S; Hedrich R; Kunaschk M; Paasch S; Schulze R; Brunner E
    Biometals; 2013 Feb; 26(1):141-50. PubMed ID: 23266794
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Examination of silicate limitation of primary production by diatoms phytoplankton in the Daihai Lake].
    Lü CW; He J; Liang Y; Mao HF; Liu HL; Wang FJ
    Huan Jing Ke Xue; 2010 Mar; 31(3):639-44. PubMed ID: 20358820
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.