These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 26842659)
1. A role for diatom-like silicon transporters in calcifying coccolithophores. Durak GM; Taylor AR; Walker CE; Probert I; de Vargas C; Audic S; Schroeder D; Brownlee C; Wheeler GL Nat Commun; 2016 Feb; 7():10543. PubMed ID: 26842659 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the molecular mechanisms of silicon uptake in coccolithophores. Ratcliffe S; Meyer EM; Walker CE; Knight M; McNair HM; Matson PG; Iglesias-Rodriguez D; Brzezinski M; Langer G; Sadekov A; Greaves M; Brownlee C; Curnow P; Taylor AR; Wheeler GL Environ Microbiol; 2023 Feb; 25(2):315-330. PubMed ID: 36397254 [TBL] [Abstract][Full Text] [Related]
3. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification. Beaufort L; Probert I; de Garidel-Thoron T; Bendif EM; Ruiz-Pino D; Metzl N; Goyet C; Buchet N; Coupel P; Grelaud M; Rost B; Rickaby RE; de Vargas C Nature; 2011 Aug; 476(7358):80-3. PubMed ID: 21814280 [TBL] [Abstract][Full Text] [Related]
4. Coccolithophore biomineralization: New questions, new answers. Brownlee C; Wheeler GL; Taylor AR Semin Cell Dev Biol; 2015 Oct; 46():11-6. PubMed ID: 26498037 [TBL] [Abstract][Full Text] [Related]
5. Cell-Penetrating Peptide Delivery of Nucleic Acid Cargo to Flavin C; Chatterjee A ACS Synth Biol; 2024 Jan; 13(1):77-84. PubMed ID: 38147049 [TBL] [Abstract][Full Text] [Related]
6. The requirement for calcification differs between ecologically important coccolithophore species. Walker CE; Taylor AR; Langer G; Durak GM; Heath S; Probert I; Tyrrell T; Brownlee C; Wheeler GL New Phytol; 2018 Oct; 220(1):147-162. PubMed ID: 29916209 [TBL] [Abstract][Full Text] [Related]
7. Pan genome of the phytoplankton Emiliania underpins its global distribution. Read BA; Kegel J; Klute MJ; Kuo A; Lefebvre SC; Maumus F; Mayer C; Miller J; Monier A; Salamov A; Young J; Aguilar M; Claverie JM; Frickenhaus S; Gonzalez K; Herman EK; Lin YC; Napier J; Ogata H; Sarno AF; Shmutz J; Schroeder D; de Vargas C; Verret F; von Dassow P; Valentin K; Van de Peer Y; Wheeler G; ; Dacks JB; Delwiche CF; Dyhrman ST; Glöckner G; John U; Richards T; Worden AZ; Zhang X; Grigoriev IV Nature; 2013 Jul; 499(7457):209-13. PubMed ID: 23760476 [TBL] [Abstract][Full Text] [Related]
8. Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Mackinder L; Wheeler G; Schroeder D; von Dassow P; Riebesell U; Brownlee C Environ Microbiol; 2011 Dec; 13(12):3250-65. PubMed ID: 21902794 [TBL] [Abstract][Full Text] [Related]
9. A joint proteomic and genomic investigation provides insights into the mechanism of calcification in coccolithophores. Skeffington A; Fischer A; Sviben S; Brzezinka M; Górka M; Bertinetti L; Woehle C; Huettel B; Graf A; Scheffel A Nat Commun; 2023 Jun; 14(1):3749. PubMed ID: 37353496 [TBL] [Abstract][Full Text] [Related]
10. A comparison of species specific sensitivities to changing light and carbonate chemistry in calcifying marine phytoplankton. Gafar NA; Eyre BD; Schulz KG Sci Rep; 2019 Feb; 9(1):2486. PubMed ID: 30792404 [TBL] [Abstract][Full Text] [Related]
11. Dynamic energy budget modeling reveals the potential of future growth and calcification for the coccolithophore Emiliania huxleyi in an acidified ocean. Muller EB; Nisbet RM Glob Chang Biol; 2014 Jun; 20(6):2031-8. PubMed ID: 24526588 [TBL] [Abstract][Full Text] [Related]
12. Gene expression changes in the coccolithophore Emiliania huxleyi after 500 generations of selection to ocean acidification. Lohbeck KT; Riebesell U; Reusch TB Proc Biol Sci; 2014 Jul; 281(1786):. PubMed ID: 24827439 [TBL] [Abstract][Full Text] [Related]
13. The Ecology, Biogeochemistry, and Optical Properties of Coccolithophores. Balch WM Ann Rev Mar Sci; 2018 Jan; 10():71-98. PubMed ID: 29298138 [TBL] [Abstract][Full Text] [Related]
14. Emiliania huxleyi coccolith calcite mass modulation by morphological changes and ecology in the Mediterranean Sea. D'Amario B; Ziveri P; Grelaud M; Oviedo A PLoS One; 2018; 13(7):e0201161. PubMed ID: 30040853 [TBL] [Abstract][Full Text] [Related]
15. The Evolution of Silicon Transport in Eukaryotes. Marron AO; Ratcliffe S; Wheeler GL; Goldstein RE; King N; Not F; de Vargas C; Richter DJ Mol Biol Evol; 2016 Dec; 33(12):3226-3248. PubMed ID: 27729397 [TBL] [Abstract][Full Text] [Related]
17. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology. Wheeler GL; Sturm D; Langer G J Phycol; 2023 Dec; 59(6):1123-1129. PubMed ID: 37983837 [TBL] [Abstract][Full Text] [Related]
18. A synergetic biomineralization strategy for immobilizing strontium during calcification of the coccolithophore Emiliania huxleyi. Sun S; Liu M; Nie X; Dong F; Hu W; Tan D; Huo T Environ Sci Pollut Res Int; 2018 Aug; 25(23):22446-22454. PubMed ID: 29368204 [TBL] [Abstract][Full Text] [Related]
19. Transcriptional response of Emiliania huxleyi under changing nutrient environments in the North Pacific Subtropical Gyre. Alexander H; Rouco M; Haley ST; Dyhrman ST Environ Microbiol; 2020 May; 22(5):1847-1860. PubMed ID: 32064744 [TBL] [Abstract][Full Text] [Related]
20. Role of silicon in the development of complex crystal shapes in coccolithophores. Langer G; Taylor AR; Walker CE; Meyer EM; Ben Joseph O; Gal A; Harper GM; Probert I; Brownlee C; Wheeler GL New Phytol; 2021 Sep; 231(5):1845-1857. PubMed ID: 33483994 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]