These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 2684274)
1. Large increases in general stability for subtilisin BPN' through incremental changes in the free energy of unfolding. Pantoliano MW; Whitlow M; Wood JF; Dodd SW; Hardman KD; Rollence ML; Bryan PN Biochemistry; 1989 Sep; 28(18):7205-13. PubMed ID: 2684274 [TBL] [Abstract][Full Text] [Related]
2. Crystal structure of calcium-independent subtilisin BPN' with restored thermal stability folded without the prodomain. Almog O; Gallagher T; Tordova M; Hoskins J; Bryan P; Gilliland GL Proteins; 1998 Apr; 31(1):21-32. PubMed ID: 9552156 [TBL] [Abstract][Full Text] [Related]
3. Incorporation of a stabilizing Ca(2+)-binding loop into subtilisin BPN'. Braxton S; Wells JA Biochemistry; 1992 Sep; 31(34):7796-801. PubMed ID: 1510966 [TBL] [Abstract][Full Text] [Related]
4. Structural basis of thermostability. Analysis of stabilizing mutations in subtilisin BPN'. Almog O; Gallagher DT; Ladner JE; Strausberg S; Alexander P; Bryan P; Gilliland GL J Biol Chem; 2002 Jul; 277(30):27553-8. PubMed ID: 12011071 [TBL] [Abstract][Full Text] [Related]
5. Crystal structure analysis of subtilisin BPN' mutants engineered for studying thermal stability. Gilliland GL; Gallagher DT; Alexander P; Bryan P Adv Exp Med Biol; 1996; 379():159-69. PubMed ID: 8796321 [TBL] [Abstract][Full Text] [Related]
6. Engineering the independent folding of the subtilisin BPN' prodomain: analysis of two-state folding versus protein stability. Ruvinov S; Wang L; Ruan B; Almog O; Gilliland GL; Eisenstein E; Bryan PN Biochemistry; 1997 Aug; 36(34):10414-21. PubMed ID: 9265621 [TBL] [Abstract][Full Text] [Related]
7. Designing subtilisin BPN' to cleave substrates containing dibasic residues. Ballinger MD; Tom J; Wells JA Biochemistry; 1995 Oct; 34(41):13312-9. PubMed ID: 7577915 [TBL] [Abstract][Full Text] [Related]
9. Thermal denaturation of streptomyces subtilisin inhibitor, subtilisin BPN', and the inhibitor-subtilisin complex. Takahashi K; Sturtevant JM Biochemistry; 1981 Oct; 20(21):6185-90. PubMed ID: 7030385 [TBL] [Abstract][Full Text] [Related]
10. Stabilizing the subtilisin BPN' pro-domain by phage display selection: how restrictive is the amino acid code for maximum protein stability? Ruan B; Hoskins J; Wang L; Bryan PN Protein Sci; 1998 Nov; 7(11):2345-53. PubMed ID: 9828000 [TBL] [Abstract][Full Text] [Related]
11. The refined crystal structure of subtilisin Carlsberg at 2.5 A resolution. Neidhart DJ; Petsko GA Protein Eng; 1988 Oct; 2(4):271-6. PubMed ID: 3150541 [TBL] [Abstract][Full Text] [Related]
12. Folding of subtilisin BPN': characterization of a folding intermediate. Eder J; Rheinnecker M; Fersht AR Biochemistry; 1993 Jan; 32(1):18-26. PubMed ID: 8418836 [TBL] [Abstract][Full Text] [Related]
13. Contribution of long-range electrostatic interactions to the stabilization of the catalytic transition state of the serine protease subtilisin BPN'. Jackson SE; Fersht AR Biochemistry; 1993 Dec; 32(50):13909-16. PubMed ID: 8268166 [TBL] [Abstract][Full Text] [Related]
14. Engineering thermostability in subtilisin BPN' by in vitro mutagenesis. Rollence ML; Filpula D; Pantoliano MW; Bryan PN Crit Rev Biotechnol; 1988; 8(3):217-24. PubMed ID: 3145814 [TBL] [Abstract][Full Text] [Related]
15. The engineering of binding affinity at metal ion binding sites for the stabilization of proteins: subtilisin as a test case. Pantoliano MW; Whitlow M; Wood JF; Rollence ML; Finzel BC; Gilliland GL; Poulos TL; Bryan PN Biochemistry; 1988 Nov; 27(22):8311-7. PubMed ID: 3072018 [TBL] [Abstract][Full Text] [Related]
16. The complete amino acid substitutions at position 131 that are positively involved in cold adaptation of subtilisin BPN'. Taguchi S; Komada S; Momose H Appl Environ Microbiol; 2000 Apr; 66(4):1410-5. PubMed ID: 10742220 [TBL] [Abstract][Full Text] [Related]
17. Protein engineering of disulfide bonds in subtilisin BPN'. Mitchinson C; Wells JA Biochemistry; 1989 May; 28(11):4807-15. PubMed ID: 2504281 [TBL] [Abstract][Full Text] [Related]
18. Effects of engineered salt bridges on the stability of subtilisin BPN'. Erwin CR; Barnett BL; Oliver JD; Sullivan JF Protein Eng; 1990 Oct; 4(1):87-97. PubMed ID: 2127106 [TBL] [Abstract][Full Text] [Related]
19. Enzyme behavior at surfaces. Site-specific variants of subtilisin BPN' with enhanced surface stability. Brode PF; Erwin CR; Rauch DS; Lucas DS; Rubingh DN J Biol Chem; 1994 Sep; 269(38):23538-43. PubMed ID: 8089121 [TBL] [Abstract][Full Text] [Related]
20. Protein engineering of subtilisin BPN': enhanced stabilization through the introduction of two cysteines to form a disulfide bond. Pantoliano MW; Ladner RC; Bryan PN; Rollence ML; Wood JF; Poulos TL Biochemistry; 1987 Apr; 26(8):2077-82. PubMed ID: 3476160 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]