BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 26842818)

  • 1. Advances in HSP27 and HSP90-targeting strategies for glioblastoma.
    van Ommeren R; Staudt MD; Xu H; Hebb MO
    J Neurooncol; 2016 Apr; 127(2):209-19. PubMed ID: 26842818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HSP27 knockdown produces synergistic induction of apoptosis by HSP90 and kinase inhibitors in glioblastoma multiforme.
    Belkacemi L; Hebb MO
    Anticancer Res; 2014 Sep; 34(9):4915-27. PubMed ID: 25202074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heat shock protein antagonists in early stage clinical trials for NSCLC.
    Hendriks LEL; Dingemans AC
    Expert Opin Investig Drugs; 2017 May; 26(5):541-550. PubMed ID: 28274158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of heat shock protein (Hsp) 27 potentiates the suppressive effect of Hsp90 inhibitors in targeting breast cancer stem-like cells.
    Lee CH; Hong HM; Chang YY; Chang WW
    Biochimie; 2012 Jun; 94(6):1382-9. PubMed ID: 22445681
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy (Review).
    Wang X; Chen M; Zhou J; Zhang X
    Int J Oncol; 2014 Jul; 45(1):18-30. PubMed ID: 24789222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Concomitant inhibition of HSP90, its mitochondrial localized homologue TRAP1 and HSP27 by green tea in pancreatic cancer HPAF-II cells.
    Zhang L; Pang E; Loo RR; Rao J; Go VL; Loo JA; Lu QY
    Proteomics; 2011 Dec; 11(24):4638-47. PubMed ID: 22116673
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Discovery of Small-Molecule Inhibitors of the HSP90-Calcineurin-NFAT Pathway against Glioblastoma.
    Liu Z; Li H; He L; Xiang Y; Tian C; Li C; Tan P; Jing J; Tian Y; Du L; Huang Y; Han L; Li M; Zhou Y
    Cell Chem Biol; 2019 Mar; 26(3):352-365.e7. PubMed ID: 30639261
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 17AEP-GA, an HSP90 antagonist, is a potent inhibitor of glioblastoma cell proliferation, survival, migration and invasion.
    Miekus K; Kijowski J; SekuĊ‚a M; Majka M
    Oncol Rep; 2012 Nov; 28(5):1903-9. PubMed ID: 22941268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The novel Hsp90 inhibitor NXD30001 induces tumor regression in a genetically engineered mouse model of glioblastoma multiforme.
    Zhu H; Woolfenden S; Bronson RT; Jaffer ZM; Barluenga S; Winssinger N; Rubenstein AE; Chen R; Charest A
    Mol Cancer Ther; 2010 Sep; 9(9):2618-26. PubMed ID: 20643786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small-Molecule HSP27 Inhibitor Abolishes Androgen Receptors in Glioblastoma.
    Li Y; Orahoske CM; Geldenhuys WJ; Bhattarai A; Sabbagh A; Bobba V; Salem FM; Zhang W; Shukla GC; Lathia JD; Wang B; Su B
    J Med Chem; 2021 Feb; 64(3):1570-1583. PubMed ID: 33523674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat Shock Proteins in Glioblastoma Biology: Where Do We Stand?
    Iglesia RP; Fernandes CFL; Coelho BP; Prado MB; Melo Escobar MI; Almeida GHDR; Lopes MH
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31752169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heat shock proteins and cancer: How can nanomedicine be harnessed?
    Sauvage F; Messaoudi S; Fattal E; Barratt G; Vergnaud-Gauduchon J
    J Control Release; 2017 Feb; 248():133-143. PubMed ID: 28088573
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Thermosensitization of tumor cells with inhibitors of chaperone activity and expression].
    Kudriavtsev VA; Makarova IuM; Kabakav AE
    Biomed Khim; 2012; 58(6):662-72. PubMed ID: 23350198
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The chaperone system in glioblastoma multiforme and derived cell lines: diagnostic and mechanistic implications.
    Alberti G; Campanella C; Paladino L; Porcasi R; Bavisotto CC; Pitruzzella A; Graziano F; Florena AM; Argo A; de Macario EC; Macario AJ; Cappello F; Bucchieri F; Barone R; Rappa F
    Front Biosci (Landmark Ed); 2022 Mar; 27(3):97. PubMed ID: 35345329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tanespimycin: the opportunities and challenges of targeting heat shock protein 90.
    Erlichman C
    Expert Opin Investig Drugs; 2009 Jun; 18(6):861-8. PubMed ID: 19466875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The promise of heat shock protein inhibitors in the treatment of castration resistant prostate cancer.
    Ischia J; Saad F; Gleave M
    Curr Opin Urol; 2013 May; 23(3):194-200. PubMed ID: 23385973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quercetin blocks t-AUCB-induced autophagy by Hsp27 and Atg7 inhibition in glioblastoma cells in vitro.
    Li J; Tang C; Li L; Li R; Fan Y
    J Neurooncol; 2016 Aug; 129(1):39-45. PubMed ID: 27174198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heat shock protein 90: a unique chemotherapeutic target.
    Cullinan SB; Whitesell L
    Semin Oncol; 2006 Aug; 33(4):457-65. PubMed ID: 16890800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stimulation of electroporation-induced inward currents in glioblastoma cell lines by the heat shock protein inhibitor AUY922.
    Chiang NJ; Wu SN; Kao CA; Huang YM; Chen LT
    Clin Exp Pharmacol Physiol; 2014 Oct; 41(10):830-7. PubMed ID: 24909268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Upregulation of heat shock protein 27 confers resistance to actinomycin D-induced apoptosis in cancer cells.
    Ma W; Teng Y; Hua H; Hou J; Luo T; Jiang Y
    FEBS J; 2013 Sep; 280(18):4612-24. PubMed ID: 23848600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.