BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

700 related articles for article (PubMed ID: 26842905)

  • 1. Spinal inhibition and motor function in adults with spastic cerebral palsy.
    Condliffe EG; Jeffery DT; Emery DJ; Gorassini MA
    J Physiol; 2016 May; 594(10):2691-705. PubMed ID: 26842905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in sensory-evoked synaptic activation of motoneurons after spinal cord injury in man.
    Norton JA; Bennett DJ; Knash ME; Murray KC; Gorassini MA
    Brain; 2008 Jun; 131(Pt 6):1478-91. PubMed ID: 18344559
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of conditioning cutaneomuscular stimulation on the soleus H-reflex in normal and spastic paretic subjects during walking and standing.
    Fung J; Barbeau H
    J Neurophysiol; 1994 Nov; 72(5):2090-104. PubMed ID: 7884446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Full Activation Profiles and Integrity of Corticospinal Pathways in Adults With Bilateral Spastic Cerebral Palsy.
    Condliffe EG; Jeffery DT; Emery DJ; Treit S; Beaulieu C; Gorassini MA
    Neurorehabil Neural Repair; 2019 Jan; 33(1):59-69. PubMed ID: 30595088
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spastic long-lasting reflexes in the awake rat after sacral spinal cord injury.
    Bennett DJ; Sanelli L; Cooke CL; Harvey PJ; Gorassini MA
    J Neurophysiol; 2004 May; 91(5):2247-58. PubMed ID: 15069102
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of baclofen on spinal reflexes and persistent inward currents in motoneurons of chronic spinal rats with spasticity.
    Li Y; Li X; Harvey PJ; Bennett DJ
    J Neurophysiol; 2004 Nov; 92(5):2694-703. PubMed ID: 15486423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in group Ia projections to motoneurons following spinal lesions in humans.
    Mailis A; Ashby P
    J Neurophysiol; 1990 Aug; 64(2):637-47. PubMed ID: 2213136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hyperexcitability of brain stem pathways in cerebral palsy.
    Smith AT; Gorassini MA
    J Neurophysiol; 2018 Sep; 120(3):1428-1437. PubMed ID: 29947590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrophysiological assessment of spinal circuits in spasticity by direct dorsal root stimulation.
    Fasano VA; Barolat-Romana G; Zeme S; Squazzi A
    Neurosurgery; 1979 Feb; 4(2):146-51. PubMed ID: 440546
    [No Abstract]   [Full Text] [Related]  

  • 10. Differential synaptic effects on physiological flexor hindlimb motoneurons from cutaneous nerve inputs in spinal cat.
    Leahy JC; Durkovic RG
    J Neurophysiol; 1991 Aug; 66(2):460-72. PubMed ID: 1774582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facilitation of sensory transmission to motoneurons during cortical or sensory-evoked primary afferent depolarization (PAD) in humans.
    Metz K; Matos IC; Li Y; Afsharipour B; Thompson CK; Negro F; Quinlan KA; Bennett DJ; Gorassini MA
    J Physiol; 2023 May; 601(10):1897-1924. PubMed ID: 36916205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of peripheral afferents and spinal reflexes in normal and impaired human locomotion.
    Dietz V
    Rev Neurol (Paris); 1987; 143(4):241-54. PubMed ID: 3629074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Changes in the excitability of the spinal motor neurons during sessions of functional biocontrol in patients with different forms of infantile cerebral palsy].
    Bogdanov OV; Sheliakin AM; Pinchuk DIu; Pisar'kova EV
    Zh Nevrol Psikhiatr Im S S Korsakova; 1993; 93(5):46-9. PubMed ID: 8154218
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relation between spasticity and muscle behavior during the swing phase of gait in children with cerebral palsy.
    Bar-On L; Molenaers G; Aertbeliën E; Monari D; Feys H; Desloovere K
    Res Dev Disabil; 2014 Dec; 35(12):3354-64. PubMed ID: 25240217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic inhibition of cat phrenic motoneurons by internal intercostal nerve stimulation.
    Bellingham MC
    J Neurophysiol; 1999 Sep; 82(3):1224-32. PubMed ID: 10482742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered corticospinal projections to lower limb motoneurons in subjects with cerebral palsy.
    Brouwer B; Ashby P
    Brain; 1991 Jun; 114 ( Pt 3)():1395-407. PubMed ID: 2065257
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurophysiological mechanisms in abnormal reflex activities in cerebral palsy and spinal spasticity.
    Barolat-Romana G; Davis R
    J Neurol Neurosurg Psychiatry; 1980 Apr; 43(4):333-42. PubMed ID: 7373332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cutaneomuscular reflex responses recorded from the lower limb in children and adolescents with cerebral palsy.
    Gibbs J; Harrison LM; Stephens JA; Evans AL
    Dev Med Child Neurol; 1999 Jul; 41(7):456-64. PubMed ID: 10454229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective motor control and gross motor function in bilateral spastic cerebral palsy.
    Noble JJ; Gough M; Shortland AP
    Dev Med Child Neurol; 2019 Jan; 61(1):57-61. PubMed ID: 30203469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction of spinal sensory transmission by facilitation of 5-HT1B/D receptors in noninjured and spinal cord-injured humans.
    D'Amico JM; Li Y; Bennett DJ; Gorassini MA
    J Neurophysiol; 2013 Mar; 109(6):1485-93. PubMed ID: 23221401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.