These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 26843094)
1. Lactate modulates the intracellular pH sensitivity of human TREK1 channels. Ghatak S; Sikdar SK Pflugers Arch; 2016 May; 468(5):825-36. PubMed ID: 26843094 [TBL] [Abstract][Full Text] [Related]
2. Ischaemic concentrations of lactate increase TREK1 channel activity by interacting with a single histidine residue in the carboxy terminal domain. Ghatak S; Banerjee A; Sikdar SK J Physiol; 2016 Jan; 594(1):59-81. PubMed ID: 26445100 [TBL] [Abstract][Full Text] [Related]
3. l-Lactate mediates neuroprotection against ischaemia by increasing TREK1 channel expression in rat hippocampal astrocytes in vitro. Banerjee A; Ghatak S; Sikdar SK J Neurochem; 2016 Jul; 138(2):265-81. PubMed ID: 27062641 [TBL] [Abstract][Full Text] [Related]
4. 17β-estradiol potentiates TREK1 channel activity through G protein-coupled estrogen receptor. Choudhury N; Sikdar SK J Steroid Biochem Mol Biol; 2018 Oct; 183():94-105. PubMed ID: 29883692 [TBL] [Abstract][Full Text] [Related]
5. Intracellular activation of full-length human TREK-1 channel by hypoxia, high lactate, and low pH denotes polymodal integration by ischemic factors. Mukherjee S; Sikdar SK Pflugers Arch; 2021 Feb; 473(2):167-183. PubMed ID: 33025137 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of human two-pore domain K+ channel TREK1 by local anesthetic lidocaine: negative cooperativity and half-of-sites saturation kinetics. Nayak TK; Harinath S; Nama S; Somasundaram K; Sikdar SK Mol Pharmacol; 2009 Oct; 76(4):903-17. PubMed ID: 19622790 [TBL] [Abstract][Full Text] [Related]
7. Polymodal regulation of hTREK1 by pH, arachidonic acid, and hypoxia: physiological impact in acidosis and alkalosis. Miller P; Peers C; Kemp PJ Am J Physiol Cell Physiol; 2004 Feb; 286(2):C272-82. PubMed ID: 14522822 [TBL] [Abstract][Full Text] [Related]
8. Prolonged exposure to lactate causes TREK1 channel clustering in rat hippocampal astrocytes. Ghatak S; Kumar Sikdar S Neurosci Lett; 2024 Jan; 821():137613. PubMed ID: 38157928 [TBL] [Abstract][Full Text] [Related]
9. Structural requirements for O2 sensing by the human tandem-P domain channel, hTREK1. Miller P; Kemp PJ; Peers C Biochem Biophys Res Commun; 2005 Jun; 331(4):1253-6. PubMed ID: 15883010 [TBL] [Abstract][Full Text] [Related]
10. Extracellular acidification exerts opposite actions on TREK1 and TREK2 potassium channels via a single conserved histidine residue. Sandoz G; Douguet D; Chatelain F; Lazdunski M; Lesage F Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14628-33. PubMed ID: 19667202 [TBL] [Abstract][Full Text] [Related]
11. Heterodimerization within the TREK channel subfamily produces a diverse family of highly regulated potassium channels. Levitz J; Royal P; Comoglio Y; Wdziekonski B; Schaub S; Clemens DM; Isacoff EY; Sandoz G Proc Natl Acad Sci U S A; 2016 Apr; 113(15):4194-9. PubMed ID: 27035963 [TBL] [Abstract][Full Text] [Related]
12. Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Sandoz G; Bell SC; Isacoff EY Proc Natl Acad Sci U S A; 2011 Feb; 108(6):2605-10. PubMed ID: 21262820 [TBL] [Abstract][Full Text] [Related]
13. TREK1 channel blockade induces an antidepressant-like response synergizing with 5-HT1A receptor signaling. Ye D; Li Y; Zhang X; Guo F; Geng L; Zhang Q; Zhang Z Eur Neuropsychopharmacol; 2015 Dec; 25(12):2426-36. PubMed ID: 26441141 [TBL] [Abstract][Full Text] [Related]
14. Regulation of recombinant human brain tandem P domain K+ channels by hypoxia: a role for O2 in the control of neuronal excitability? Kemp PJ; Peers C; Lewis A; Miller P J Cell Mol Med; 2004; 8(1):38-44. PubMed ID: 15090259 [TBL] [Abstract][Full Text] [Related]
15. Altered acetylcholine, bradykinin and cutaneous pressure-induced vasodilation in mice lacking the TREK1 potassium channel: the endothelial link. Garry A; Fromy B; Blondeau N; Henrion D; Brau F; Gounon P; Guy N; Heurteaux C; Lazdunski M; Saumet JL EMBO Rep; 2007 Apr; 8(4):354-9. PubMed ID: 17347672 [TBL] [Abstract][Full Text] [Related]
16. Relative contribution of SKCa and TREK1 channels in purinergic and nitrergic neuromuscular transmission in the rat colon. Gil V; Gallego D; Moha Ou Maati H; Peyronnet R; Martínez-Cutillas M; Heurteaux C; Borsotto M; Jiménez M Am J Physiol Gastrointest Liver Physiol; 2012 Aug; 303(3):G412-23. PubMed ID: 22636169 [TBL] [Abstract][Full Text] [Related]
17. Protein complex analysis of native brain potassium channels by proteomics. Sandoz G; Lesage F Methods Mol Biol; 2008; 491():113-23. PubMed ID: 18998088 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of TREK1 channel surface expression by protein-protein interaction with beta-COP. Kim E; Hwang EM; Yarishkin O; Yoo JC; Kim D; Park N; Cho M; Lee YS; Sun CH; Yi GS; Yoo J; Kang D; Han J; Hong SG; Park JY Biochem Biophys Res Commun; 2010 Apr; 395(2):244-50. PubMed ID: 20362547 [TBL] [Abstract][Full Text] [Related]
19. Influence of the N terminus on the biophysical properties and pharmacology of TREK1 potassium channels. Veale EL; Al-Moubarak E; Bajaria N; Omoto K; Cao L; Tucker SJ; Stevens EB; Mathie A Mol Pharmacol; 2014 May; 85(5):671-81. PubMed ID: 24509840 [TBL] [Abstract][Full Text] [Related]
20. Validation of TREK1 ion channel activators as an immunomodulatory and neuroprotective strategy in neuroinflammation. Schroeter CB; Nelke C; Schewe M; Spohler L; Herrmann AM; Müntefering T; Huntemann N; Kuzikov M; Gribbon P; Albrecht S; Bock S; Hundehege P; Neelsen LC; Baukrowitz T; Seebohm G; Wünsch B; Bittner S; Ruck T; Budde T; Meuth SG Biol Chem; 2023 Mar; 404(4):355-375. PubMed ID: 36774650 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]