These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26843143)

  • 21. Direct Visualization of Gap-Plasmon Propagation on a Near-Touching Nanowire Dimer.
    Park SM; Lee KS; Kim JH; Yeon GJ; Shin HH; Park S; Kim ZH
    J Phys Chem Lett; 2020 Nov; 11(21):9313-9320. PubMed ID: 33089991
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted delivery and controllable release of nanoparticles using a defect-decorated optical nanofiber.
    Xin H; Li B
    Opt Express; 2011 Jul; 19(14):13285-90. PubMed ID: 21747483
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A suspended core nanofiber with unprecedented large diameter ratio of holey region to core.
    Liao M; Chaudhari C; Yan X; Qin G; Kito C; Suzuki T; Ohishi Y
    Opt Express; 2010 Apr; 18(9):9088-97. PubMed ID: 20588756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient transportation of nano-sized particles along slotted photonic crystal waveguide.
    Lin PT; Lee PT
    Opt Express; 2012 Jan; 20(3):3192-9. PubMed ID: 22330556
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Plasma-Synthesized Silver Nanoparticles on Electrospun Chitosan Nanofiber Surfaces for Antibacterial Applications.
    Annur D; Wang ZK; Liao JD; Kuo C
    Biomacromolecules; 2015 Oct; 16(10):3248-55. PubMed ID: 26366749
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Surface plasmons on zig-zag gratings.
    Constant TJ; Taphouse TS; Rance HJ; Kitson SC; Hibbins AP; Sambles JR
    Opt Express; 2012 Oct; 20(21):23921-6. PubMed ID: 23188358
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Angle-tunable enhanced infrared reflection absorption spectroscopy via grating-coupled surface plasmon resonance.
    Petefish JW; Hillier AC
    Anal Chem; 2014 Mar; 86(5):2610-7. PubMed ID: 24499196
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method.
    Amendola V
    Phys Chem Chem Phys; 2016 Jan; 18(3):2230-41. PubMed ID: 26694826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. All-optical controllable trapping and transport of subwavelength particles on a tapered photonic crystal waveguide.
    Lin PT; Lee PT
    Opt Lett; 2011 Feb; 36(3):424-6. PubMed ID: 21283211
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Subwavelength polarization beam splitter with controllable splitting ratio based on surface plasmon polaritons.
    Chen Y; Song G; Xiao J; Yu L; Zhang J
    Opt Express; 2013 Jan; 21(1):314-21. PubMed ID: 23388925
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimization of gain-assisted waveguiding in metal-dielectric nanowires.
    Handapangoda D; Rukhlenko ID; Premaratne M; Jagadish C
    Opt Lett; 2010 Dec; 35(24):4190-2. PubMed ID: 21165133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface plasmon-enhanced light-emitting diodes using silver nanoparticles embedded in p-GaN.
    Cho CY; Kwon MK; Lee SJ; Han SH; Kang JW; Kang SE; Lee DY; Park SJ
    Nanotechnology; 2010 May; 21(20):205201. PubMed ID: 20413842
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Long-range dielectric-loaded surface plasmon-polariton waveguides.
    Holmgaard T; Gosciniak J; Bozhevolnyi SI
    Opt Express; 2010 Oct; 18(22):23009-15. PubMed ID: 21164640
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap.
    Yoo D; Gurunatha KL; Choi HK; Mohr DA; Ertsgaard CT; Gordon R; Oh SH
    Nano Lett; 2018 Jun; 18(6):3637-3642. PubMed ID: 29763566
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Power-law analysis of surface-plasmon-enhanced electromagnetic field dependence of blinking SERS of thiacyanine or thiacarbocyanine adsorbed on single silver nanoaggregates.
    Kitahama Y; Tanaka Y; Itoh T; Ozaki Y
    Phys Chem Chem Phys; 2011 Apr; 13(16):7439-48. PubMed ID: 21412542
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strong optical coupling between mutually orthogonal plasmon oscillations in a silver nanosphere-nanowire joined system.
    Kim S; Imura K; Lee M; Narushima T; Okamoto H; Jeong DH
    Phys Chem Chem Phys; 2013 Mar; 15(12):4146-53. PubMed ID: 23165283
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Influence of symmetry breaking degrees on surface plasmon polaritons propagation in branched silver nanowire waveguides.
    Hua J; Wu F; Xu Z; Wang W
    Sci Rep; 2016 Sep; 6():34418. PubMed ID: 27677403
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evanescent field trapping of nanoparticles using nanostructured ultrathin optical fibers.
    Daly M; Truong VG; Chormaic SN
    Opt Express; 2016 Jun; 24(13):14470-82. PubMed ID: 27410600
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design of a versatile chemical assembly method for patterning colloidal nanoparticles.
    Choi JH; Adams SM; Ragan R
    Nanotechnology; 2009 Feb; 20(6):065301. PubMed ID: 19417377
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface plasmon resonances, optical properties, and electrical conductivity thermal hystersis of silver nanofibers produced by the electrospinning technique.
    Barakat NA; Woo KD; Kanjwal MA; Choi KE; Khil MS; Kim HY
    Langmuir; 2008 Oct; 24(20):11982-7. PubMed ID: 18811221
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.