BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 26843173)

  • 1. Design, Construction, and Validation of Artificial MicroRNA Vectors Using Agrobacterium-Mediated Transient Expression System.
    Bhagwat B; Chi M; Han D; Tang H; Tang G; Xiang Y
    Methods Mol Biol; 2016; 1405():149-62. PubMed ID: 26843173
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An in vivo transient expression system can be applied for rapid and effective selection of artificial microRNA constructs for plant stable genetic transformation.
    Bhagwat B; Chi M; Su L; Tang H; Tang G; Xiang Y
    J Genet Genomics; 2013 May; 40(5):261-70. PubMed ID: 23706301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing effective amiRNA and multimeric amiRNA against plant viruses.
    Fahim M; Larkin PJ
    Methods Mol Biol; 2013; 942():357-77. PubMed ID: 23027061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the sequence characteristics of miRNAs on multi-viral resistance mediated by single amiRNAs in transgenic tobacco.
    Song YZ; Han QJ; Jiang F; Sun RZ; Fan ZH; Zhu CX; Wen FJ
    Plant Physiol Biochem; 2014 Apr; 77():90-8. PubMed ID: 24561715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation and identification of candidate genes for artificial microRNA-mediated resistance to tomato spotted wilt virus.
    Mitter N; Zhai Y; Bai AX; Chua K; Eid S; Constantin M; Mitchell R; Pappu HR
    Virus Res; 2016 Jan; 211():151-8. PubMed ID: 26454192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comprehensive protein-based artificial microRNA screens for effective gene silencing in plants.
    Li JF; Chung HS; Niu Y; Bush J; McCormack M; Sheen J
    Plant Cell; 2013 May; 25(5):1507-22. PubMed ID: 23645631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of artificial microRNA technology to control gene expression in Arabidopsis thaliana.
    Eamens AL; McHale M; Waterhouse PM
    Methods Mol Biol; 2014; 1062():211-24. PubMed ID: 24057368
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.
    Jelly NS; Schellenbaum P; Walter B; Maillot P
    Transgenic Res; 2012 Dec; 21(6):1319-27. PubMed ID: 22427113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method for construction of artificial microRNA vector in plant.
    Li Y; Li Y; Zhao S; Zhong S; Wang Z; Ding B; Li Y
    Biotechnol Lett; 2014 Oct; 36(10):2117-23. PubMed ID: 24930106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel approach for the construction of plant amiRNA expression vectors.
    Yan H; Deng X; Cao Y; Huang J; Ma L; Zhao B
    J Biotechnol; 2011 Jan; 151(1):9-14. PubMed ID: 21040750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. AmiRNA Designer - new method of artificial miRNA design.
    Mickiewicz A; Rybarczyk A; Sarzynska J; Figlerowicz M; Blazewicz J
    Acta Biochim Pol; 2016; 63(1):71-77. PubMed ID: 26784022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Simple Protoplast-Based Method for Screening Potent Artificial miRNA for Maximal Gene Silencing in Arabidopsis.
    Zhang N; Zhang D; Li JF
    Curr Protoc Mol Biol; 2017 Jan; 117():26.9.1-26.9.10. PubMed ID: 28060406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple artificial microRNAs targeting conserved motifs of the replicase gene confer robust transgenic resistance to negative-sense single-stranded RNA plant virus.
    Kung YJ; Lin SS; Huang YL; Chen TC; Harish SS; Chua NH; Yeh SD
    Mol Plant Pathol; 2012 Apr; 13(3):303-17. PubMed ID: 21929564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved method for constructing plant amiRNA vectors with blue-white screening and MAGIC.
    Yan H; Zhong X; Jiang S; Zhai C; Ma L
    Biotechnol Lett; 2011 Aug; 33(8):1683-8. PubMed ID: 21479629
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly efficient virus resistance mediated by artificial microRNAs that target the suppressor of PVX and PVY in plants.
    Ai T; Zhang L; Gao Z; Zhu CX; Guo X
    Plant Biol (Stuttg); 2011 Mar; 13(2):304-16. PubMed ID: 21309977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New generation of artificial MicroRNA and synthetic trans-acting small interfering RNA vectors for efficient gene silencing in Arabidopsis.
    Carbonell A; Takeda A; Fahlgren N; Johnson SC; Cuperus JT; Carrington JC
    Plant Physiol; 2014 May; 165(1):15-29. PubMed ID: 24647477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vectors and methods for hairpin RNA and artificial microRNA-mediated gene silencing in plants.
    Eamens AL; Waterhouse PM
    Methods Mol Biol; 2011; 701():179-97. PubMed ID: 21181531
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Customization of Artificial MicroRNA Design.
    Van Vu T; Do VN
    Methods Mol Biol; 2017; 1509():235-243. PubMed ID: 27826932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and High-Throughput Generation of Artificial Small RNA Constructs for Plants.
    Carbonell A
    Methods Mol Biol; 2019; 1932():247-260. PubMed ID: 30701506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineered Artificial MicroRNA Precursors Facilitate Cloning and Gene Silencing in Arabidopsis and Rice.
    Zhang D; Zhang N; Shen W; Li JF
    Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31717686
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.