These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 26843366)

  • 41. Registry-induced electronic superstructure in double-walled carbon nanotubes, associated with the interaction between two graphene-like monolayers.
    Tison Y; Giusca CE; Sloan J; Silva SR
    ACS Nano; 2008 Oct; 2(10):2113-20. PubMed ID: 19206458
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water on graphene surfaces.
    Gordillo MC; Martí J
    J Phys Condens Matter; 2010 Jul; 22(28):284111. PubMed ID: 21399283
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Morphology, chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: source apportionment in workroom air of aluminium smelters.
    Weinbruch S; Benker N; Kandler K; Ebert M; Ellingsen DG; Berlinger B; Thomassen Y
    Anal Bioanal Chem; 2016 Feb; 408(4):1151-8. PubMed ID: 26637216
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Water-assisted growth of graphene on carbon nanotubes by the chemical vapor deposition method.
    Feng JM; Dai YJ
    Nanoscale; 2013 May; 5(10):4422-6. PubMed ID: 23579565
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Optimizing the physical-chemical properties of carbon nanotubes (CNT) and graphene nanoplatelets (GNP) on Cu(II) adsorption.
    Rosenzweig S; Sorial GA; Sahle-Demessie E; McAvoy DC
    J Hazard Mater; 2014 Aug; 279():410-7. PubMed ID: 25103452
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Re-structuring protein crystals porosity for biotemplating by chemical modification of lysine residues.
    Cohen-Hadar N; Lagziel-Simis S; Wine Y; Frolow F; Freeman A
    Biotechnol Bioeng; 2011 Jan; 108(1):1-11. PubMed ID: 20824688
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Carbon Nanomaterials Based Electrochemical Sensors/Biosensors for the Sensitive Detection of Pharmaceutical and Biological Compounds.
    Adhikari BR; Govindhan M; Chen A
    Sensors (Basel); 2015 Sep; 15(9):22490-508. PubMed ID: 26404304
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aqueous dispersions of oligomer-grafted carbon nanomaterials with controlled surface charge and minimal framework damage.
    Hu S; Chen S; Menzel R; Goode AD; Ryan MP; Porter AE; Shaffer MS
    Faraday Discuss; 2014; 173():273-85. PubMed ID: 25254653
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Antioxidant deactivation on graphenic nanocarbon surfaces.
    Liu X; Sen S; Liu J; Kulaots I; Geohegan D; Kane A; Puretzky AA; Rouleau CM; More KL; Palmore GT; Hurt RH
    Small; 2011 Oct; 7(19):2775-85. PubMed ID: 21818846
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling the density and site of attachment of gold nanoparticles onto the surface of carbon nanotubes.
    Kumar S; Kaur I; Dharamvir K; Bharadwaj LM
    J Colloid Interface Sci; 2012 Mar; 369(1):23-7. PubMed ID: 22218340
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Microstructures and nanostructures for environmental carbon nanotubes and nanoparticulate soots.
    Murr LE
    Int J Environ Res Public Health; 2008 Dec; 5(5):321-36. PubMed ID: 19151426
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of the roughness, topography, and physicochemical properties of chemically modified surfaces on the heterogeneous nucleation of protein crystals.
    Liu YX; Wang XJ; Lu J; Ching CB
    J Phys Chem B; 2007 Dec; 111(50):13971-8. PubMed ID: 18044862
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Carbonology: pharmacochemical aspect and research prospects].
    Chekman IS; Syrova HO; Nebesna TIu; Shapoval LH; Shapoval OV
    Lik Sprava; 2012; (1-2):3-12. PubMed ID: 23035596
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Enhanced mechanical properties of nanocomposites at low graphene content.
    Rafiee MA; Rafiee J; Wang Z; Song H; Yu ZZ; Koratkar N
    ACS Nano; 2009 Dec; 3(12):3884-90. PubMed ID: 19957928
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of carbon nanotube protein corona by using quantitative proteomics.
    Cai X; Ramalingam R; Wong HS; Cheng J; Ajuh P; Cheng SH; Lam YW
    Nanomedicine; 2013 Jul; 9(5):583-93. PubMed ID: 23117048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A new electrochemical sensor of nitro aromatic compound based on three-dimensional porous Pt-Pd nanoparticles supported by graphene-multiwalled carbon nanotube composite.
    Yuan CX; Fan YR; Tao-Zhang ; Guo HX; Zhang JX; Wang YL; Shan DL; Lu XQ
    Biosens Bioelectron; 2014 Aug; 58():85-91. PubMed ID: 24632133
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Surface functionalization of carbon nanomaterials by self-assembling hydrophobin proteins.
    Yang W; Ren Q; Wu YN; Morris VK; Rey AA; Braet F; Kwan AH; Sunde M
    Biopolymers; 2013 Jan; 99(1):84-94. PubMed ID: 23097233
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Controlling protein crystal nucleation by droplet-based microfluidics.
    Maeki M; Teshima Y; Yoshizuka S; Yamaguchi H; Yamashita K; Miyazaki M
    Chemistry; 2014 Jan; 20(4):1049-56. PubMed ID: 24382819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanoparticles in liquid crystals and liquid crystalline nanoparticles.
    Stamatoiu O; Mirzaei J; Feng X; Hegmann T
    Top Curr Chem; 2012; 318():331-93. PubMed ID: 21928012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.