These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1241 related articles for article (PubMed ID: 26843595)

  • 1. Pooled, but not single-neuron, responses in macaque V4 represent a solution to the stereo correspondence problem.
    Abdolrahmani ا M; Doi T; Shiozaki HM; Fujita I
    J Neurophysiol; 2016 Apr; 115(4):1917-31. PubMed ID: 26843595
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Disparity-tuning characteristics of neuronal responses to dynamic random-dot stereograms in macaque visual area V4.
    Tanabe S; Doi T; Umeda K; Fujita I
    J Neurophysiol; 2005 Oct; 94(4):2683-99. PubMed ID: 16000525
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Responses of primary visual cortical neurons to binocular disparity without depth perception.
    Cumming BG; Parker AJ
    Nature; 1997 Sep; 389(6648):280-3. PubMed ID: 9305841
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial frequency integration for binocular correspondence in macaque area V4.
    Kumano H; Tanabe S; Fujita I
    J Neurophysiol; 2008 Jan; 99(1):402-8. PubMed ID: 17959744
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disparity-selective neurons in area V4 of macaque monkeys.
    Watanabe M; Tanaka H; Uka T; Fujita I
    J Neurophysiol; 2002 Apr; 87(4):1960-73. PubMed ID: 11929915
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rejection of false matches for binocular correspondence in macaque visual cortical area V4.
    Tanabe S; Umeda K; Fujita I
    J Neurosci; 2004 Sep; 24(37):8170-80. PubMed ID: 15371518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. At least at the level of inferior temporal cortex, the stereo correspondence problem is solved.
    Janssen P; Vogels R; Liu Y; Orban GA
    Neuron; 2003 Feb; 37(4):693-701. PubMed ID: 12597865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to Binocular Anticorrelation Results in Increased Neural Excitability.
    Rideaux R; Michael E; Welchman AE
    J Cogn Neurosci; 2020 Jan; 32(1):100-110. PubMed ID: 31560264
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Specialized contributions of mid-tier stages of dorsal and ventral pathways to stereoscopic processing in macaque.
    Yoshioka TW; Doi T; Abdolrahmani M; Fujita I
    Elife; 2021 Feb; 10():. PubMed ID: 33625356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Range and mechanism of encoding of horizontal disparity in macaque V1.
    Prince SJ; Cumming BG; Parker AJ
    J Neurophysiol; 2002 Jan; 87(1):209-21. PubMed ID: 11784743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Representation of stereoscopic depth based on relative disparity in macaque area V4.
    Umeda K; Tanabe S; Fujita I
    J Neurophysiol; 2007 Jul; 98(1):241-52. PubMed ID: 17507498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coding of horizontal disparity and velocity by MT neurons in the alert macaque.
    DeAngelis GC; Uka T
    J Neurophysiol; 2003 Feb; 89(2):1094-111. PubMed ID: 12574483
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reappraisal of DL/V4 boundaries based on connectivity patterns of dorsolateral visual cortex in macaques.
    Stepniewska I; Collins CE; Kaas JH
    Cereb Cortex; 2005 Jun; 15(6):809-22. PubMed ID: 15459077
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence of Stereoscopic Surface Disambiguation in the Responses of V1 Neurons.
    Samonds JM; Tyler CW; Lee TS
    Cereb Cortex; 2017 Mar; 27(3):2260-2275. PubMed ID: 26965904
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimulus dependence of disparity coding in primate visual area V4.
    Hegdé J; Van Essen DC
    J Neurophysiol; 2005 Jan; 93(1):620-6. PubMed ID: 15342712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. V1 partially solves the stereo aperture problem.
    Howe PD; Livingstone MS
    Cereb Cortex; 2006 Sep; 16(9):1332-7. PubMed ID: 16306321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.
    Majaj NJ; Hong H; Solomon EA; DiCarlo JJ
    J Neurosci; 2015 Sep; 35(39):13402-18. PubMed ID: 26424887
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macaque inferior temporal neurons are selective for disparity-defined three-dimensional shapes.
    Janssen P; Vogels R; Orban GA
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):8217-22. PubMed ID: 10393975
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoscopic vision: solving the correspondence problem.
    Nieder A
    Curr Biol; 2003 May; 13(10):R394-6. PubMed ID: 12747850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal dynamics of binocular disparity processing in the central visual pathway.
    Menz MD; Freeman RD
    J Neurophysiol; 2004 Apr; 91(4):1782-93. PubMed ID: 14668292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 63.