These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26843602)

  • 1. Synaptic refinement during development and its effect on slow-wave activity: a computational study.
    Hoel EP; Albantakis L; Cirelli C; Tononi G
    J Neurophysiol; 2016 Apr; 115(4):2199-213. PubMed ID: 26843602
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sleep homeostasis and cortical synchronization: I. Modeling the effects of synaptic strength on sleep slow waves.
    Esser SK; Hill SL; Tononi G
    Sleep; 2007 Dec; 30(12):1617-30. PubMed ID: 18246972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental aspects of sleep slow waves: linking sleep, brain maturation and behavior.
    Ringli M; Huber R
    Prog Brain Res; 2011; 193():63-82. PubMed ID: 21854956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synaptic potentiation and sleep need: clues from molecular and electrophysiological studies.
    Hanlon EC; Vyazovskiy VV; Faraguna U; Tononi G; Cirelli C
    Curr Top Med Chem; 2011; 11(19):2472-82. PubMed ID: 21906017
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sleep homeostasis and cortical synchronization: II. A local field potential study of sleep slow waves in the rat.
    Vyazovskiy VV; Riedner BA; Cirelli C; Tononi G
    Sleep; 2007 Dec; 30(12):1631-42. PubMed ID: 18246973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sleep and synaptic renormalization: a computational study.
    Olcese U; Esser SK; Tononi G
    J Neurophysiol; 2010 Dec; 104(6):3476-93. PubMed ID: 20926617
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blindfolding during wakefulness causes decrease in sleep slow wave activity.
    Korf EM; Mölle M; Born J; Ngo HV
    Physiol Rep; 2017 Apr; 5(7):. PubMed ID: 28408638
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Local sleep and learning.
    Huber R; Ghilardi MF; Massimini M; Tononi G
    Nature; 2004 Jul; 430(6995):78-81. PubMed ID: 15184907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sleep-Dependent Potentiation in the Visual System Is at Odds with the Synaptic Homeostasis Hypothesis.
    Durkin J; Aton SJ
    Sleep; 2016 Jan; 39(1):155-9. PubMed ID: 26285006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling sleep and wakefulness in the thalamocortical system.
    Hill S; Tononi G
    J Neurophysiol; 2005 Mar; 93(3):1671-98. PubMed ID: 15537811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Breakdown of effective connectivity during slow wave sleep: investigating the mechanism underlying a cortical gate using large-scale modeling.
    Esser SK; Hill S; Tononi G
    J Neurophysiol; 2009 Oct; 102(4):2096-111. PubMed ID: 19657080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spike timing-dependent synaptic plasticity in visual cortex: a modeling study.
    Shen YS; Gao H; Yao H
    J Comput Neurosci; 2005; 18(1):25-39. PubMed ID: 15789167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arm immobilization causes cortical plastic changes and locally decreases sleep slow wave activity.
    Huber R; Ghilardi MF; Massimini M; Ferrarelli F; Riedner BA; Peterson MJ; Tononi G
    Nat Neurosci; 2006 Sep; 9(9):1169-76. PubMed ID: 16936722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Emergent effects of synaptic connectivity on the dynamics of global and local slow waves in a large-scale thalamocortical network model of the human brain.
    Marsh B; Navas-Zuloaga MG; Rosen BQ; Sokolov Y; Delanois JE; Gonzalez OC; Krishnan GP; Halgren E; Bazhenov M
    PLoS Comput Biol; 2024 Jul; 20(7):e1012245. PubMed ID: 39028760
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synaptic transmission and plasticity in an active cortical network.
    Reig R; Sanchez-Vives MV
    PLoS One; 2007 Aug; 2(7):e670. PubMed ID: 17668052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Visual imagery and visual perception induce similar changes in occipital slow waves of sleep.
    Bernardi G; Betta M; Cataldi J; Leo A; Haba-Rubio J; Heinzer R; Cirelli C; Tononi G; Pietrini P; Ricciardi E; Siclari F
    J Neurophysiol; 2019 Jun; 121(6):2140-2152. PubMed ID: 30943100
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The mediating role of cortical thickness and gray matter volume on sleep slow-wave activity during adolescence.
    Goldstone A; Willoughby AR; de Zambotti M; Franzen PL; Kwon D; Pohl KM; Pfefferbaum A; Sullivan EV; Müller-Oehring EM; Prouty DE; Hasler BP; Clark DB; Colrain IM; Baker FC
    Brain Struct Funct; 2018 Mar; 223(2):669-685. PubMed ID: 28913599
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sleep slow-wave activity reveals developmental changes in experience-dependent plasticity.
    Wilhelm I; Kurth S; Ringli M; Mouthon AL; Buchmann A; Geiger A; Jenni OG; Huber R
    J Neurosci; 2014 Sep; 34(37):12568-75. PubMed ID: 25209294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Experience-dependent slow-wave sleep development.
    Miyamoto H; Katagiri H; Hensch T
    Nat Neurosci; 2003 Jun; 6(6):553-4. PubMed ID: 12754515
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cortical slow wave activity correlates with striatal synaptic strength in normal but not in Parkinsonian rats.
    Galati S; Song W; Orban G; Luft AR; Kaelin-Lang A
    Exp Neurol; 2018 Mar; 301(Pt A):50-58. PubMed ID: 29248630
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.