BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 26843654)

  • 1. Orexin Neurons Respond Differentially to Auditory Cues Associated with Appetitive versus Aversive Outcomes.
    Hassani OK; Krause MR; Mainville L; Cordova CA; Jones BE
    J Neurosci; 2016 Feb; 36(5):1747-57. PubMed ID: 26843654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABAergic neurons intermingled with orexin and MCH neurons in the lateral hypothalamus discharge maximally during sleep.
    Hassani OK; Henny P; Lee MG; Jones BE
    Eur J Neurosci; 2010 Aug; 32(3):448-57. PubMed ID: 20597977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Discharge of identified orexin/hypocretin neurons across the sleep-waking cycle.
    Lee MG; Hassani OK; Jones BE
    J Neurosci; 2005 Jul; 25(28):6716-20. PubMed ID: 16014733
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Innervation of orexin/hypocretin neurons by GABAergic, glutamatergic or cholinergic basal forebrain terminals evidenced by immunostaining for presynaptic vesicular transporter and postsynaptic scaffolding proteins.
    Henny P; Jones BE
    J Comp Neurol; 2006 Dec; 499(4):645-61. PubMed ID: 17029265
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melanin-concentrating hormone neurons discharge in a reciprocal manner to orexin neurons across the sleep-wake cycle.
    Hassani OK; Lee MG; Jones BE
    Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2418-22. PubMed ID: 19188611
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Fos induction in hypothalamic orexin/hypocretin, but not melanin-concentrating hormone neurons, by a learned food-cue that stimulates feeding in sated rats.
    Petrovich GD; Hobin MP; Reppucci CJ
    Neuroscience; 2012 Nov; 224():70-80. PubMed ID: 22922124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neuronal activity of orexin and non-orexin waking-active neurons during wake-sleep states in the mouse.
    Takahashi K; Lin JS; Sakai K
    Neuroscience; 2008 May; 153(3):860-70. PubMed ID: 18424001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of cortical activation and behavioral arousal by cholinergic and orexinergic systems.
    Jones BE
    Ann N Y Acad Sci; 2008; 1129():26-34. PubMed ID: 18591466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Control of appetitive and aversive taste-reactivity responses by an auditory conditioned stimulus in a devaluation task: a FOS and behavioral analysis.
    Kerfoot EC; Agarwal I; Lee HJ; Holland PC
    Learn Mem; 2007 Sep; 14(9):581-9. PubMed ID: 17761543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GABA Receptors on Orexin and Melanin-Concentrating Hormone Neurons Are Differentially Homeostatically Regulated Following Sleep Deprivation.
    Toossi H; Del Cid-Pellitero E; Jones BE
    eNeuro; 2016; 3(3):. PubMed ID: 27294196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neurons containing orexin or melanin concentrating hormone reciprocally regulate wake and sleep.
    Konadhode RR; Pelluru D; Shiromani PJ
    Front Syst Neurosci; 2014; 8():244. PubMed ID: 25620917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat.
    Boucetta S; Cissé Y; Mainville L; Morales M; Jones BE
    J Neurosci; 2014 Mar; 34(13):4708-27. PubMed ID: 24672016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Lateral Hypothalamic Orexin Activity by Local GABAergic Neurons.
    Ferrari LL; Park D; Zhu L; Palmer MR; Broadhurst RY; Arrigoni E
    J Neurosci; 2018 Feb; 38(6):1588-1599. PubMed ID: 29311142
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of medial hypothalamic orexin neurons during a Go/No-Go task.
    Freeman LR; Aston-Jones G
    Brain Res; 2020 Mar; 1731():145928. PubMed ID: 30176242
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Opposite effects of noradrenaline and acetylcholine upon hypocretin/orexin versus melanin concentrating hormone neurons in rat hypothalamic slices.
    Bayer L; Eggermann E; Serafin M; Grivel J; Machard D; Muhlethaler M; Jones BE
    Neuroscience; 2005; 130(4):807-11. PubMed ID: 15652980
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using signaled barpressing tasks to study the neural substrates of appetitive and aversive learning in rats: behavioral manipulations and cerebellar lesions.
    Steinmetz JE; Logue SF; Miller DP
    Behav Neurosci; 1993 Dec; 107(6):941-54. PubMed ID: 8136069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Appetitive associative learning recruits a distinct network with cortical, striatal, and hypothalamic regions.
    Cole S; Hobin MP; Petrovich GD
    Neuroscience; 2015 Feb; 286():187-202. PubMed ID: 25463526
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orexin and MCH neurons express c-Fos differently after sleep deprivation vs. recovery and bear different adrenergic receptors.
    Modirrousta M; Mainville L; Jones BE
    Eur J Neurosci; 2005 May; 21(10):2807-16. PubMed ID: 15926928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The dynamic regulation of appetitive behavior through lateral hypothalamic orexin and melanin concentrating hormone expressing cells.
    Lee J; Raycraft L; Johnson AW
    Physiol Behav; 2021 Feb; 229():113234. PubMed ID: 33130035
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sleep-waking discharge patterns of neurons recorded in the rat perifornical lateral hypothalamic area.
    Alam MN; Gong H; Alam T; Jaganath R; McGinty D; Szymusiak R
    J Physiol; 2002 Jan; 538(Pt 2):619-31. PubMed ID: 11790824
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.