These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 26843658)

  • 1. Genetic diversity of the NE Atlantic sea urchin
    Norderhaug KM; Anglès d'Auriac MB; Fagerli CW; Gundersen H; Christie H; Dahl K; Hobæk A
    Mar Biol; 2016; 163():36. PubMed ID: 26843658
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of physical factors on kelp and sea urchin distribution in previously and still grazed areas in the NE Atlantic.
    Rinde E; Christie H; Fagerli CW; Bekkby T; Gundersen H; Norderhaug KM; Hjermann DØ
    PLoS One; 2014; 9(6):e100222. PubMed ID: 24949954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trans-Arctic vicariance in
    Addison JA; Kim J
    PeerJ; 2022; 10():e13930. PubMed ID: 36164602
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New microsatellite loci for the green sea urchin Strongylocentrotus droebachiensis using universal M13 labelled markers.
    Anglès d'Auriac MB; Hobæk A; Christie H; Gundersen H; Fagerli CW; Haugstetter J; Norderhaug KM
    BMC Res Notes; 2014 Oct; 7():699. PubMed ID: 25291990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Colonization, dispersal, and hybridization influence phylogeography of North Atlantic sea urchins (Strongylocentrotus droebachiensis).
    Addison JA; Hart MW
    Evolution; 2005 Mar; 59(3):532-43. PubMed ID: 15856696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of removing sea urchins (Strongylocentrotus droebachiensis): Stability of the barren state and succession of kelp forest recovery in the east Atlantic.
    Leinaas HP; Christie H
    Oecologia; 1996 Mar; 105(4):524-536. PubMed ID: 28307146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increased macroalgal abundance following mass mortalities of sea urchins (Strongylocentrotus droebachiensis) along the Atlantic coast of Nova Scotia.
    Scheibling R
    Oecologia; 1986 Jan; 68(2):186-198. PubMed ID: 28310126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Can multitrophic interactions and ocean warming influence large-scale kelp recovery?
    Christie H; Gundersen H; Rinde E; Filbee-Dexter K; Norderhaug KM; Pedersen T; Bekkby T; Gitmark JK; Fagerli CW
    Ecol Evol; 2019 Mar; 9(5):2847-2862. PubMed ID: 30891221
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depletion of coastal predatory fish sub-stocks coincided with the largest sea urchin grazing event observed in the NE Atlantic.
    Norderhaug KM; Nedreaas K; Huserbråten M; Moland E
    Ambio; 2021 Jan; 50(1):163-173. PubMed ID: 32720251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MITOCHONDRIAL DNA DIVERSITY IN THE SEA URCHINS STRONGYLOCENTROTUS PURPURATUS AND S. DROEBACHIENSIS.
    Palumbi SR; Wilson AC
    Evolution; 1990 Mar; 44(2):403-415. PubMed ID: 28564372
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Intraspecific divergence in sperm morphology of the green sea urchin, Strongylocentrotus droebachiensis: implications for selection in broadcast spawners.
    Manier MK; Palumbi SR
    BMC Evol Biol; 2008 Oct; 8():283. PubMed ID: 18851755
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resource allocation and extracellular acid-base status in the sea urchin Strongylocentrotus droebachiensis in response to CO₂ induced seawater acidification.
    Stumpp M; Trübenbach K; Brennecke D; Hu MY; Melzner F
    Aquat Toxicol; 2012 Apr; 110-111():194-207. PubMed ID: 22343465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple gene genealogies reveal asymmetrical hybridization and introgression among strongylocentrotid sea urchins.
    Addison JA; Pogson GH
    Mol Ecol; 2009 Mar; 18(6):1239-51. PubMed ID: 19222750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evidence for association of Vibrio echinoideorum with tissue necrosis on test of the green sea urchin Strongylocentrotus droebachiensis.
    Hira J; Stensvåg K
    Sci Rep; 2022 Mar; 12(1):4859. PubMed ID: 35318339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sperm polymorphism within the sea urchin Strongylocentrotus droebachiensis: divergence between Pacific and Atlantic oceans.
    Marks JA; Biermann CH; Eanes WF; Kryvi H
    Biol Bull; 2008 Oct; 215(2):115-25. PubMed ID: 18840772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Seascapes and foraging success: Movement and resource discovery by a benthic marine herbivore.
    MacGregor KA; Johnson LE
    Ecol Evol; 2022 Sep; 12(9):e9243. PubMed ID: 36110878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema.
    Lessios HA; Kessing BD; Pearse JS
    Evolution; 2001 May; 55(5):955-75. PubMed ID: 11430656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans.
    Lessios HA; Kane J; Robertson DR
    Evolution; 2003 Sep; 57(9):2026-36. PubMed ID: 14575324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diversity of Polyhydroxynaphthoquinone Pigments in North Pacific Sea Urchins.
    Vasileva EA; Mishchenko NP; Fedoreyev SA
    Chem Biodivers; 2017 Sep; 14(9):. PubMed ID: 28557305
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Observations from the Hydrolysis of the Green Sea Urchin (
    Solstad RG; James P
    Glob Chall; 2023 May; 7(5):2200078. PubMed ID: 37205929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.