These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 26843699)

  • 21. Biofilm inspired fabrication of functional bacterial cellulose through ex-situ and in-situ approaches.
    Gilmour KA; Aljannat M; Markwell C; James P; Scott J; Jiang Y; Torun H; Dade-Robertson M; Zhang M
    Carbohydr Polym; 2023 Mar; 304():120482. PubMed ID: 36641190
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of bacterial cellulose using hot water extracted wood sugars.
    Erbas Kiziltas E; Kiziltas A; Gardner DJ
    Carbohydr Polym; 2015 Jun; 124():131-8. PubMed ID: 25839803
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overview of bacterial cellulose composites: a multipurpose advanced material.
    Shah N; Ul-Islam M; Khattak WA; Park JK
    Carbohydr Polym; 2013 Nov; 98(2):1585-98. PubMed ID: 24053844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Bioconversion of elephant grass (Pennisetum purpureum) acid hydrolysate to bacterial cellulose by Gluconacetobacter xylinus.
    Yang XY; Huang C; Guo HJ; Xiong L; Li YY; Zhang HR; Chen XD
    J Appl Microbiol; 2013 Oct; 115(4):995-1002. PubMed ID: 23890373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mixed gels from whey protein isolate and cellulose microfibrils.
    Peng J; Calabrese V; Ainis WN; Scager R; Velikov KP; Venema P; van der Linden E
    Int J Biol Macromol; 2019 Mar; 124():1094-1105. PubMed ID: 30476515
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Functionalized bacterial cellulose derivatives and nanocomposites.
    Hu W; Chen S; Yang J; Li Z; Wang H
    Carbohydr Polym; 2014 Jan; 101():1043-60. PubMed ID: 24299873
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable bacterial cellulose production by Achromobacter using mango peel waste.
    Hasanin MS; Abdelraof M; Hashem AH; El Saied H
    Microb Cell Fact; 2023 Feb; 22(1):24. PubMed ID: 36747200
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structure and properties of bacterial cellulose produced using a trickling bed reactor.
    Lu H; Jiang X
    Appl Biochem Biotechnol; 2014 Apr; 172(8):3844-61. PubMed ID: 24682876
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial cellulose yield increased over 500% by supplementation of medium with vegetable oil.
    Żywicka A; Junka AF; Szymczyk P; Chodaczek G; Grzesiak J; Sedghizadeh PP; Fijałkowski K
    Carbohydr Polym; 2018 Nov; 199():294-303. PubMed ID: 30143132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Using Durian Shell Hydrolysate as Low-Cost Substrate for Bacterial Cellulose Production by
    Luo MT; Zhao C; Huang C; Chen XF; Huang QL; Qi GX; Tian LL; Xiong L; Li HL; Chen XD
    Indian J Microbiol; 2017 Dec; 57(4):393-399. PubMed ID: 29151639
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nano- and macroscale structural and mechanical properties of in situ synthesized bacterial cellulose/PEO-b-PPO-b-PEO biocomposites.
    Tercjak A; Gutierrez J; Barud HS; Domeneguetti RR; Ribeiro SJ
    ACS Appl Mater Interfaces; 2015 Feb; 7(7):4142-50. PubMed ID: 25633223
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media.
    Salari M; Sowti Khiabani M; Rezaei Mokarram R; Ghanbarzadeh B; Samadi Kafil H
    Int J Biol Macromol; 2019 Feb; 122():280-288. PubMed ID: 30342939
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Fabrication and In-Vivo Study of Micro-Colloidal
    Pasaribu KM; Gea S; Ilyas S; Tamrin T; Sarumaha AA; Sembiring A; Radecka I
    Polymers (Basel); 2020 Jun; 12(7):. PubMed ID: 32605046
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rational design of a high-strength bone scaffold platform based on in situ hybridization of bacterial cellulose/nano-hydroxyapatite framework and silk fibroin reinforcing phase.
    Jiang P; Ran J; Yan P; Zheng L; Shen X; Tong H
    J Biomater Sci Polym Ed; 2018 Feb; 29(2):107-124. PubMed ID: 29140181
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Production of Bacterial Cellulose by
    Costa AFS; Almeida FCG; Vinhas GM; Sarubbo LA
    Front Microbiol; 2017; 8():2027. PubMed ID: 29089941
    [TBL] [Abstract][Full Text] [Related]  

  • 36.
    Ul-Islam M; Ahmad F; Fatima A; Shah N; Yasir S; Ahmad MW; Manan S; Ullah MW
    Front Bioeng Biotechnol; 2021; 9():601988. PubMed ID: 33634082
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Physical, morphological, antimicrobial and release properties of novel MgO-bacterial cellulose nanohybrids prepared by in-situ and ex-situ methods.
    Mirtalebi SS; Almasi H; Alizadeh Khaledabad M
    Int J Biol Macromol; 2019 May; 128():848-857. PubMed ID: 30731158
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ preparation of bacterial cellulose with antimicrobial properties from bioconversion of mulberry leaves.
    Chen J; Chen C; Liang G; Xu X; Hao Q; Sun D
    Carbohydr Polym; 2019 Sep; 220():170-175. PubMed ID: 31196537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fruit peels support higher yield and superior quality bacterial cellulose production.
    Kumbhar JV; Rajwade JM; Paknikar KM
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6677-91. PubMed ID: 25957154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development and evaluation of ciprofloxacin-bacterial cellulose composites produced through in situ incorporation method.
    Syed Abdullah SS; Faisul Aris FA; Said Azmi SNN; Anak John JHS; Khairul Anuar NN; Mohd Asnawi ASF
    Biotechnol Rep (Amst); 2022 Jun; 34():e00726. PubMed ID: 35686008
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.