BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 26843972)

  • 1. N-succinyl chitosan-dialdehyde starch hybrid hydrogels for biomedical applications.
    Kamoun EA
    J Adv Res; 2016 Jan; 7(1):69-77. PubMed ID: 26843972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preparation and characterization of wound healing hydrogel based on fish skin collagen and chitosan cross-linked by dialdehyde starch.
    Valipour F; Rahimabadi EZ; Rostamzad H
    Int J Biol Macromol; 2023 Dec; 253(Pt 3):126704. PubMed ID: 37673145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for cartilage tissue engineering.
    Tan H; Chu CR; Payne KA; Marra KG
    Biomaterials; 2009 May; 30(13):2499-506. PubMed ID: 19167750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable in situ forming biodegradable chitosan-hyaluronic acid based hydrogels for adipose tissue regeneration.
    Tan H; Rubin JP; Marra KG
    Organogenesis; 2010; 6(3):173-80. PubMed ID: 21197220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Preparation and Properties of Amino-Carboxymethyl Chitosan-Based Antibacterial Hydrogel Loaded with ε-Polylysine.
    Li Y; Qiu Y; Hou H; Zhang G; Hao H; Bi J
    Foods; 2023 Oct; 12(20):. PubMed ID: 37893700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Injectable hydrogel based on dialdehyde galactomannan and N-succinyl chitosan: a suitable platform for cell culture.
    Lucas de Lima E; Fittipaldi Vasconcelos N; da Silva Maciel J; Karine Andrade F; Silveira Vieira R; Andrade Feitosa JP
    J Mater Sci Mater Med; 2019 Dec; 31(1):5. PubMed ID: 31832856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ forming of PEG-NH
    Zhang W; Sun XL; Yang Q; Guo Y; Cui Y; Xiang Y; Hu B; Wei J; Tu P
    Int J Biol Macromol; 2024 Jan; 256(Pt 1):128355. PubMed ID: 37995790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Preparation of hybrid hydrogel containing Ag nanoparticles by a green in situ reduction method.
    Xia B; Cui Q; He F; Li L
    Langmuir; 2012 Jul; 28(30):11188-94. PubMed ID: 22770209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In situ forming hydrogel of natural polysaccharides through Schiff base reaction for soft tissue adhesive and hemostasis.
    Liu J; Li J; Yu F; Zhao YX; Mo XM; Pan JF
    Int J Biol Macromol; 2020 Mar; 147():653-666. PubMed ID: 31923505
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Covalently polysaccharide-based alginate/chitosan hydrogel embedded alginate microspheres for BSA encapsulation and soft tissue engineering.
    Xing L; Sun J; Tan H; Yuan G; Li J; Jia Y; Xiong D; Chen G; Lai J; Ling Z; Chen Y; Niu X
    Int J Biol Macromol; 2019 Apr; 127():340-348. PubMed ID: 30658141
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel.
    Xu Z; Yuan L; Liu Q; Li D; Mu C; Zhao L; Li X; Ge L
    Carbohydr Polym; 2022 Jun; 285():119237. PubMed ID: 35287860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-healing hyaluronic acid hydrogels based on dynamic Schiff base linkages as biomaterials.
    Li S; Pei M; Wan T; Yang H; Gu S; Tao Y; Liu X; Zhou Y; Xu W; Xiao P
    Carbohydr Polym; 2020 Dec; 250():116922. PubMed ID: 33049836
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An in situ hydrogel based on carboxymethyl chitosan and sodium alginate dialdehyde for corneal wound healing after alkali burn.
    Xu W; Liu K; Li T; Zhang W; Dong Y; Lv J; Wang W; Sun J; Li M; Wang M; Zhao Z; Liang Y
    J Biomed Mater Res A; 2019 Apr; 107(4):742-754. PubMed ID: 30548137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds.
    Naghizadeh Z; Karkhaneh A; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications.
    Janarthanan G; Tran HN; Cha E; Lee C; Das D; Noh I
    Mater Sci Eng C Mater Biol Appl; 2020 Aug; 113():111008. PubMed ID: 32487412
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Covalent and injectable chitosan-chondroitin sulfate hydrogels embedded with chitosan microspheres for drug delivery and tissue engineering.
    Fan M; Ma Y; Tan H; Jia Y; Zou S; Guo S; Zhao M; Huang H; Ling Z; Chen Y; Hu X
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():67-74. PubMed ID: 27987759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel chitosan-collagen-based hydrogel for use as a dermal filler: initial in vitro and in vivo investigations.
    Ma X; Deng J; Du Y; Li X; Fan D; Zhu C; Hui J; Ma P; Xue W
    J Mater Chem B; 2014 May; 2(18):2749-2763. PubMed ID: 32261441
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid gelling, self-healing, and fluorescence-responsive chitosan hydrogels formed by dynamic covalent crosslinking.
    Liu Q; Ji N; Xiong L; Sun Q
    Carbohydr Polym; 2020 Oct; 246():116586. PubMed ID: 32747246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogels on the Base of Modified Chitosan and Hyaluronic Acid Mix as Polymer Matrices for Cytostatics Delivery.
    Vildanova R; Lobov A; Spirikhin L; Kolesov S
    Gels; 2022 Feb; 8(2):. PubMed ID: 35200485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of hybrid pH-sensitive hydrogels of chitosan-co-acrylic acid for controlled release of verapamil.
    Ranjha NM; Ayub G; Naseem S; Ansari MT
    J Mater Sci Mater Med; 2010 Oct; 21(10):2805-16. PubMed ID: 20686825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.