These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 26844027)

  • 1. Electron mobility in semi-metal HgCdTe quantum wells: dependence on the well width.
    Melezhik EO; Gumenjuk-Sichevska JV; Sizov FF
    Springerplus; 2016; 5():80. PubMed ID: 26844027
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of Noise and Resistance of Semimetal Hg1-xCdxTe Quantum Well used as a Channel for THz Hot-Electron Bolometer.
    Melezhik EO; Gumenjuk-Sichevska JV; Sizov FF
    Nanoscale Res Lett; 2016 Dec; 11(1):181. PubMed ID: 27067729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High mobility In
    Chen C; Holmes SN; Farrer I; Beere HE; Ritchie DA
    J Phys Condens Matter; 2018 Mar; 30(10):105705. PubMed ID: 29451866
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HgCdTe-based quantum cascade lasers operating in the GaAs phonon Reststrahlen band predicted by the balance equation method.
    Ushakov D; Afonenko A; Khabibullin R; Ponomarev D; Aleshkin V; Morozov S; Dubinov A
    Opt Express; 2020 Aug; 28(17):25371-25382. PubMed ID: 32907059
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An analysis of Hall mobility in as-grown and annealed n- and p-type modulation-doped GaInNAs/GaAs quantum wells.
    Sarcan F; Donmez O; Gunes M; Erol A; Arikan MC; Puustinen J; Guina M
    Nanoscale Res Lett; 2012 Sep; 7(1):529. PubMed ID: 23009196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermoelectric transport properties in 3D Dirac semimetal Cd
    Amarnath R; Bhargavi KS; Kubakaddi SS
    J Phys Condens Matter; 2020 May; 32(22):225704. PubMed ID: 32005030
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The electron-phonon scattering and carrier mobility in monolayer AsSb.
    Luo Y; Zhao G; Wang S
    Phys Chem Chem Phys; 2020 Mar; 22(10):5688-5692. PubMed ID: 32103226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of charged impurities in thermoelectric transport in molybdenum disulfide monolayers.
    Patil SB; Sankeshwar NS; Mulimani BG
    J Phys Condens Matter; 2017 Dec; 29(48):485303. PubMed ID: 28984276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fundamental limits on the electron mobility of β-Ga
    Kang Y; Krishnaswamy K; Peelaers H; Van de Walle CG
    J Phys Condens Matter; 2017 Jun; 29(23):234001. PubMed ID: 28443602
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electron-phonon scattering limited hole mobility at room temperature in a MoS
    Guo F; Liu Z; Zhu M; Zheng Y
    Phys Chem Chem Phys; 2019 Oct; 21(41):22879-22887. PubMed ID: 31595284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low field mobility in bulk GaN and its ternary AlGaN/GaN compounds (quantum kinetic approach).
    Kovalenko KL; Kozlovskiy SI; Sharan NN; Venger EF
    J Phys Condens Matter; 2024 May; 36(32):. PubMed ID: 38738500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HfSe2: Unraveling the microscopic reason for experimental low mobility.
    Keshri SP; Pati SK; Medhi A
    J Chem Phys; 2023 Oct; 159(14):. PubMed ID: 37811821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic transport in n- and p-type modulation doped Ga(x)In(1-x)N(y)As(1-y)/ GaAs quantum wells.
    Sun Y; Balkan N; Aslan M; Lisesivdin SB; Carrere H; Arikan MC; Marie X
    J Phys Condens Matter; 2009 Apr; 21(17):174210. PubMed ID: 21825414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron-phonon interactions and the intrinsic electrical resistivity of graphene.
    Park CH; Bonini N; Sohier T; Samsonidze G; Kozinsky B; Calandra M; Mauri F; Marzari N
    Nano Lett; 2014 Mar; 14(3):1113-9. PubMed ID: 24524418
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carrier mobility and superconducting properties of monolayer oxygen-terminated functionalized MXene Ti
    Shayanfar R; Alidoosti M; Nasr Esfahani D; Pourfath M
    Nanoscale; 2023 Nov; 15(46):18806-18817. PubMed ID: 37961829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermodynamic model to predict electron mobility in superfluid helium.
    Aitken F; Volino F; Mendoza-Luna LG; Haeften KV; Eloranta J
    Phys Chem Chem Phys; 2017 Jun; 19(24):15821-15832. PubMed ID: 28585629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electron-Phonon Coupling Strength at Metal Surfaces Directly Determined from the Helium Atom Scattering Debye-Waller Factor.
    Manson JR; Benedek G; Miret-Artés S
    J Phys Chem Lett; 2016 Mar; 7(6):1016-21. PubMed ID: 26927966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dominant Scattering Mechanisms in Limiting the Electron Mobility of Scandium Nitride.
    Rudra S; Rao D; Poncé S; Saha B
    Nano Lett; 2024 Sep; 24(37):11529-11536. PubMed ID: 39240254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biaxial strain improving carrier mobility for inorganic perovskite:
    Cao S; Su Y; Song KK; Qian P; Yan Y; Shi LB
    J Phys Condens Matter; 2022 Dec; 35(5):. PubMed ID: 36395506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electron-Phonon Scattering in the Presence of Soft Modes and Electron Mobility in SrTiO_{3} Perovskite from First Principles.
    Zhou JJ; Hellman O; Bernardi M
    Phys Rev Lett; 2018 Nov; 121(22):226603. PubMed ID: 30547621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.