These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 26844297)

  • 1. An iron-iron hydrogenase mimic with appended electron reservoir for efficient proton reduction in aqueous media.
    Becker R; Amirjalayer S; Li P; Woutersen S; Reek JN
    Sci Adv; 2016 Jan; 2(1):e1501014. PubMed ID: 26844297
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chitosan confinement enhances hydrogen photogeneration from a mimic of the diiron subsite of [FeFe]-hydrogenase.
    Jian JX; Liu Q; Li ZJ; Wang F; Li XB; Li CB; Liu B; Meng QY; Chen B; Feng K; Tung CH; Wu LZ
    Nat Commun; 2013; 4():2695. PubMed ID: 24158139
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Molecular Proceedings of Biological Hydrogen Turnover.
    Haumann M; Stripp ST
    Acc Chem Res; 2018 Aug; 51(8):1755-1763. PubMed ID: 30001117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemistry of Simple Organometallic Models of Iron-Iron Hydrogenases in Organic Solvent and Water.
    Gloaguen F
    Inorg Chem; 2016 Jan; 55(2):390-8. PubMed ID: 26641526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Introducing a dark reaction to photochemistry: photocatalytic hydrogen from [FeFe] hydrogenase active site model complexes.
    Lomoth R; Ott S
    Dalton Trans; 2009 Dec; (45):9952-9. PubMed ID: 19904420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of electrocatalytic hydrogen production by a di-iron model of iron-iron hydrogenase: a density functional theory study of proton dissociation constants and electrode reduction potentials.
    Surawatanawong P; Tye JW; Darensbourg MY; Hall MB
    Dalton Trans; 2010 Mar; 39(12):3093-104. PubMed ID: 20221544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactions of [FeFe]-hydrogenase models involving the formation of hydrides related to proton reduction and hydrogen oxidation.
    Wang N; Wang M; Chen L; Sun L
    Dalton Trans; 2013 Sep; 42(34):12059-71. PubMed ID: 23846321
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photocatalytic hydrogen production using models of the iron-iron hydrogenase active site dispersed in micellar solution.
    Orain C; Quentel F; Gloaguen F
    ChemSusChem; 2014 Feb; 7(2):638-43. PubMed ID: 24127363
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthetic chemistry: making a natural fuel cell.
    Darensbourg MY
    Nature; 2005 Feb; 433(7026):589-91. PubMed ID: 15703733
    [No Abstract]   [Full Text] [Related]  

  • 10. Interplay of hemilability and redox activity in models of hydrogenase active sites.
    Ding S; Ghosh P; Darensbourg MY; Hall MB
    Proc Natl Acad Sci U S A; 2017 Nov; 114(46):E9775-E9782. PubMed ID: 29087322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of the H-cluster framework of iron-only hydrogenase.
    Tard C; Liu X; Ibrahim SK; Bruschi M; De Gioia L; Davies SC; Yang X; Wang LS; Sawers G; Pickett CJ
    Nature; 2005 Feb; 433(7026):610-3. PubMed ID: 15703741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iron-only hydrogenase mimics. Thermodynamic aspects of the use of electrochemistry to evaluate catalytic efficiency for hydrogen generation.
    Felton GA; Glass RS; Lichtenberger DL; Evans DH
    Inorg Chem; 2006 Nov; 45(23):9181-4. PubMed ID: 17083215
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value.
    Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA
    Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The crystal structure of an oxygen-tolerant hydrogenase uncovers a novel iron-sulphur centre.
    Fritsch J; Scheerer P; Frielingsdorf S; Kroschinsky S; Friedrich B; Lenz O; Spahn CM
    Nature; 2011 Oct; 479(7372):249-52. PubMed ID: 22002606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simulation of electrocatalytic hydrogen production by a bioinspired catalyst anchored to a pyrite electrode.
    Zipoli F; Car R; Cohen MH; Selloni A
    J Am Chem Soc; 2010 Jun; 132(25):8593-601. PubMed ID: 20521790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approaches to efficient molecular catalyst systems for photochemical H2 production using [FeFe]-hydrogenase active site mimics.
    Wang M; Chen L; Li X; Sun L
    Dalton Trans; 2011 Dec; 40(48):12793-800. PubMed ID: 21983599
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New redox states observed in [FeFe] hydrogenases reveal redox coupling within the H-cluster.
    Adamska-Venkatesh A; Krawietz D; Siebel J; Weber K; Happe T; Reijerse E; Lubitz W
    J Am Chem Soc; 2014 Aug; 136(32):11339-46. PubMed ID: 25025613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ligand versus metal protonation of an iron hydrogenase active site mimic.
    Eilers G; Schwartz L; Stein M; Zampella G; de Gioia L; Ott S; Lomoth R
    Chemistry; 2007; 13(25):7075-84. PubMed ID: 17566128
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential.
    Yu Z; Wang M; Li P; Dong W; Wang F; Sun L
    Dalton Trans; 2008 May; (18):2400-6. PubMed ID: 18461194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular Dynamics Studies of Proton Transport in Hydrogenase and Hydrogenase Mimics.
    Ginovska B; Raugei S; Shaw WJ
    Methods Enzymol; 2016; 578():73-101. PubMed ID: 27497163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.