These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
335 related articles for article (PubMed ID: 26844541)
1. Designing a new type of neutron detector for neutron and gamma-ray discrimination via GEANT4. Shan Q; Chu S; Ling Y; Cai P; Jia W Appl Radiat Isot; 2016 Apr; 110():200-204. PubMed ID: 26844541 [TBL] [Abstract][Full Text] [Related]
2. A scintillator-based approach to monitor secondary neutron production during proton therapy. Clarke SD; Pryser E; Wieger BM; Pozzi SA; Haelg RA; Bashkirov VA; Schulte RW Med Phys; 2016 Nov; 43(11):5915. PubMed ID: 27806590 [TBL] [Abstract][Full Text] [Related]
3. Study on the intrinsic detection efficiency of scintillator/Cherenkov detector for monitoring 14MeV neutrons by using foil activation method. Qing S; Hao F; Liang L; Zunhao H; Hongkui Z; Wenbao J; Yongsheng L; Daqian H Appl Radiat Isot; 2021 Aug; 174():109761. PubMed ID: 33971549 [TBL] [Abstract][Full Text] [Related]
4. A simulation study investigating a Cherenkov material for use with the prompt gamma range verification in proton therapy. Lau A; Ahmad S; Chen Y J Xray Sci Technol; 2016 May; 24(4):565-82. PubMed ID: 27163377 [TBL] [Abstract][Full Text] [Related]
5. New idea of a small-sized neutron detector with a plastic fibre. Matsumoto T; Harano H; Masuda A; Nishiyama J; Sakurai Y; Uritani A Radiat Prot Dosimetry; 2011 Jul; 146(1-3):92-5. PubMed ID: 21525042 [TBL] [Abstract][Full Text] [Related]
6. Conceptual design of a GEM (gas electron multiplier) based gas Cherenkov detector for measurement of 17 MeV gamma rays from T(D, γ) Putignano O; Croci G; Muraro A; Cancelli S; Caruggi F; Gorini G; Grosso G; Kushoro MH; Marcer G; Nocente M; Cippo EP; Rebai M; Rigamonti D; Tardocchi M Rev Sci Instrum; 2023 Jan; 94(1):013501. PubMed ID: 36725552 [TBL] [Abstract][Full Text] [Related]
7. Feasibility study of a new method to measure fast neutron flux by neutron-induced X-ray fluorescence method. Qing S; Hongkui Z; Zhiling K; Wenbao J; Daqian H; Yongsheng L Appl Radiat Isot; 2019 Jul; 149():60-64. PubMed ID: 31029935 [TBL] [Abstract][Full Text] [Related]
8. Dose calculation in biological samples in a mixed neutron-gamma field at the TRIGA reactor of the University of Mainz. Schmitz T; Blaickner M; Schütz C; Wiehl N; Kratz JV; Bassler N; Holzscheiter MH; Palmans H; Sharpe P; Otto G; Hampel G Acta Oncol; 2010 Oct; 49(7):1165-9. PubMed ID: 20831509 [TBL] [Abstract][Full Text] [Related]
9. Development of real-time thermal neutron monitor using boron-loaded plastic scintillator with optical fiber for boron neutron capture therapy. Ishikawa M; Ono K; Sakurai Y; Unesaki H; Uritani A; Bengua G; Kobayashi T; Tanaka K; Kosako T Appl Radiat Isot; 2004 Nov; 61(5):775-9. PubMed ID: 15308143 [TBL] [Abstract][Full Text] [Related]
10. Rhodium self-powered neutron detector as a suitable on-line thermal neutron flux monitor in BNCT treatments. Miller ME; Sztejnberg ML; González SJ; Thorp SI; Longhino JM; Estryk G Med Phys; 2011 Dec; 38(12):6502-12. PubMed ID: 22149833 [TBL] [Abstract][Full Text] [Related]
11. Characterization of gamma rays existing in the NMIJ standard neutron field. Harano H; Matsumoto T; Ito Y; Uritani A; Kudo K; Radiat Prot Dosimetry; 2004; 110(1-4):69-72. PubMed ID: 15353624 [TBL] [Abstract][Full Text] [Related]
12. Application of adjoint Monte Carlo to accelerate simulations of mono-directional beams in treatment planning for boron neutron capture therapy. Nievaart VA; Légràdy D; Moss RL; Kloosterman JL; van der Hagen TH; van Dam H Med Phys; 2007 Apr; 34(4):1321-35. PubMed ID: 17500463 [TBL] [Abstract][Full Text] [Related]
13. Thermal neutron response of a boron-coated GEM detector via GEANT4 Monte Carlo code. Jamil M; Rhee JT; Kim HG; Ahmad F; Jeon YJ Appl Radiat Isot; 2015 Jan; 95():90-93. PubMed ID: 25464183 [TBL] [Abstract][Full Text] [Related]
14. Detection system for measuring dose equivalent from fast neutrons in mixed gamma-neutron fields. Cruceru I; Rebigan F; Sandu M; Cruceru M Health Phys; 1992 May; 62(5):436-8. PubMed ID: 1559813 [TBL] [Abstract][Full Text] [Related]
15. Triple ionization chamber method for clinical dose monitoring with a Be-covered Li BNCT field. Nguyen TT; Kajimoto T; Tanaka K; Nguyen CC; Endo S Med Phys; 2016 Nov; 43(11):6049. PubMed ID: 27806584 [TBL] [Abstract][Full Text] [Related]
16. Simulation of the cement measurement based on the pulse DT neutron generator: A Monte Carlo study. Gao Y; Li J; Li J; Liu L PLoS One; 2021; 16(6):e0252078. PubMed ID: 34125857 [TBL] [Abstract][Full Text] [Related]
17. Detection of fast neutrons from shielded nuclear materials using a semiconductor alpha detector. Pöllänen R; Siiskonen T Appl Radiat Isot; 2014 Aug; 90():187-91. PubMed ID: 24792122 [TBL] [Abstract][Full Text] [Related]
18. A method for determining density based on gamma ray and fast neutron detection using a Cs Zhang Q; Zhang F; Gardner RP; Yan H; Wu G; Tian L; Chen Q; Ti Y Appl Radiat Isot; 2018 Dec; 142():77-84. PubMed ID: 30273762 [TBL] [Abstract][Full Text] [Related]
19. Development of a dual phantom technique for measuring the fast neutron component of dose in boron neutron capture therapy. Sakurai Y; Tanaka H; Kondo N; Kinashi Y; Suzuki M; Masunaga S; Ono K; Maruhashi A Med Phys; 2015 Nov; 42(11):6651-7. PubMed ID: 26520755 [TBL] [Abstract][Full Text] [Related]
20. A Monte Carlo study of the effect of coded-aperture material and thickness on neutron imaging. Hayes SC; Gamage KA Radiat Prot Dosimetry; 2014 Oct; 161(1-4):265-8. PubMed ID: 24262926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]