These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 26844644)
1. Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment. Xiao Y; Liu Y; Yang S; Zhang B; Wang T; Jiang D; Zhang J; Yu D; Zhang N Colloids Surf B Biointerfaces; 2016 May; 141():83-92. PubMed ID: 26844644 [TBL] [Abstract][Full Text] [Related]
2. Ceramide-Fabricated Co-Loaded Liposomes for the Synergistic Treatment of Hepatocellular Carcinoma. Yin X; Xiao Y; Han L; Zhang B; Wang T; Su Z; Zhang N AAPS PharmSciTech; 2018 Jul; 19(5):2133-2143. PubMed ID: 29714002 [TBL] [Abstract][Full Text] [Related]
3. Codelivery of sorafenib and GPC3 siRNA with PEI-modified liposomes for hepatoma therapy. Sun W; Wang Y; Cai M; Lin L; Chen X; Cao Z; Zhu K; Shuai X Biomater Sci; 2017 Nov; 5(12):2468-2479. PubMed ID: 29106433 [TBL] [Abstract][Full Text] [Related]
4. Biomacromolecule/lipid hybrid nanoparticles for controlled delivery of sorafenib in targeting hepatocellular carcinoma therapy. Zhang J; Wang T; Mu S; Olerile LD; Yu X; Zhang N Nanomedicine (Lond); 2017 Apr; 12(8):911-925. PubMed ID: 28339312 [TBL] [Abstract][Full Text] [Related]
5. Improving Drug Penetrability with iRGD Leverages the Therapeutic Response to Sorafenib and Doxorubicin in Hepatocellular Carcinoma. Schmithals C; Köberle V; Korkusuz H; Pleli T; Kakoschky B; Augusto EA; Ibrahim AA; Arencibia JM; Vafaizadeh V; Groner B; Korf HW; Kronenberger B; Zeuzem S; Vogl TJ; Waidmann O; Piiper A Cancer Res; 2015 Aug; 75(15):3147-54. PubMed ID: 26239478 [TBL] [Abstract][Full Text] [Related]
6. Multilayer-Coated Liquid Crystalline Nanoparticles for Effective Sorafenib Delivery to Hepatocellular Carcinoma. Thapa RK; Choi JY; Poudel BK; Hiep TT; Pathak S; Gupta B; Choi HG; Yong CS; Kim JO ACS Appl Mater Interfaces; 2015 Sep; 7(36):20360-8. PubMed ID: 26315487 [TBL] [Abstract][Full Text] [Related]
7. pH-Sensitive carboxymethyl chitosan-modified cationic liposomes for sorafenib and siRNA co-delivery. Yao Y; Su Z; Liang Y; Zhang N Int J Nanomedicine; 2015; 10():6185-97. PubMed ID: 26491291 [TBL] [Abstract][Full Text] [Related]
8. Multifunctional pH-sensitive polymeric nanoparticles for theranostics evaluated experimentally in cancer. Liu Y; Feng L; Liu T; Zhang L; Yao Y; Yu D; Wang L; Zhang N Nanoscale; 2014 Mar; 6(6):3231-42. PubMed ID: 24500240 [TBL] [Abstract][Full Text] [Related]
9. MRI evaluation of the antitumor activity of paramagnetic liposomes loaded with prednisolone phosphate. Cittadino E; Ferraretto M; Torres E; Maiocchi A; Crielaard BJ; Lammers T; Storm G; Aime S; Terreno E Eur J Pharm Sci; 2012 Mar; 45(4):436-41. PubMed ID: 21896328 [TBL] [Abstract][Full Text] [Related]
10. Codelivery of sorafenib and curcumin by directed self-assembled nanoparticles enhances therapeutic effect on hepatocellular carcinoma. Cao H; Wang Y; He X; Zhang Z; Yin Q; Chen Y; Yu H; Huang Y; Chen L; Xu M; Gu W; Li Y Mol Pharm; 2015 Mar; 12(3):922-31. PubMed ID: 25622075 [TBL] [Abstract][Full Text] [Related]
11. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Cheng Y; Zhao P; Wu S; Yang T; Chen Y; Zhang X; He C; Zheng C; Li K; Ma X; Xiang G Int J Pharm; 2018 Jul; 545(1-2):261-273. PubMed ID: 29730175 [TBL] [Abstract][Full Text] [Related]
12. In vivo biodistribution, biocompatibility, and efficacy of sorafenib-loaded lipid-based nanosuspensions evaluated experimentally in cancer. Yang S; Zhang B; Gong X; Wang T; Liu Y; Zhang N Int J Nanomedicine; 2016; 11():2329-43. PubMed ID: 27307733 [TBL] [Abstract][Full Text] [Related]
13. Acidic pH-Triggered Drug-Eluting Nanocomposites for Magnetic Resonance Imaging-Monitored Intra-arterial Drug Delivery to Hepatocellular Carcinoma. Park W; Chen J; Cho S; Park SJ; Larson AC; Na K; Kim DH ACS Appl Mater Interfaces; 2016 May; 8(20):12711-9. PubMed ID: 27159350 [TBL] [Abstract][Full Text] [Related]
14. Nanoparticles of a polyaspartamide-based brush copolymer for modified release of sorafenib: In vitro and in vivo evaluation. Cervello M; Pitarresi G; Volpe AB; Porsio B; Balasus D; Emma MR; Azzolina A; Puleio R; Loria GR; Puleo S; Giammona G J Control Release; 2017 Nov; 266():47-56. PubMed ID: 28917533 [TBL] [Abstract][Full Text] [Related]
15. A polymeric nanoparticle formulation of curcumin in combination with sorafenib synergistically inhibits tumor growth and metastasis in an orthotopic model of human hepatocellular carcinoma. Hu B; Sun D; Sun C; Sun YF; Sun HX; Zhu QF; Yang XR; Gao YB; Tang WG; Fan J; Maitra A; Anders RA; Xu Y Biochem Biophys Res Commun; 2015 Dec; 468(4):525-32. PubMed ID: 26482853 [TBL] [Abstract][Full Text] [Related]
16. Targeted therapy for human hepatic carcinoma cells using folate-functionalized polymeric micelles loaded with superparamagnetic iron oxide and sorafenib in vitro. Zhang L; Gong F; Zhang F; Ma J; Zhang P; Shen J Int J Nanomedicine; 2013; 8():1517-24. PubMed ID: 23620667 [TBL] [Abstract][Full Text] [Related]
17. In vitro study of novel gadolinium-loaded liposomes guided by GBI-10 aptamer for promising tumor targeting and tumor diagnosis by magnetic resonance imaging. Gu MJ; Li KF; Zhang LX; Wang H; Liu LS; Zheng ZZ; Han NY; Yang ZJ; Fan TY Int J Nanomedicine; 2015; 10():5187-204. PubMed ID: 26316749 [TBL] [Abstract][Full Text] [Related]
18. In vitro and in vivo evaluation of drug-eluting microspheres designed for transarterial chemoembolization therapy. Wang Y; Molin DG; Sevrin C; Grandfils C; van den Akker NM; Gagliardi M; Knetsch ML; Delhaas T; Koole LH Int J Pharm; 2016 Apr; 503(1-2):150-62. PubMed ID: 26965198 [TBL] [Abstract][Full Text] [Related]
19. Sorafenib increases efficacy of vorinostat against human hepatocellular carcinoma through transduction inhibition of vorinostat-induced ERK/NF-κB signaling. Hsu FT; Liu YC; Chiang IT; Liu RS; Wang HE; Lin WJ; Hwang JJ Int J Oncol; 2014 Jul; 45(1):177-88. PubMed ID: 24807012 [TBL] [Abstract][Full Text] [Related]
20. Comparison of sorafenib-loaded poly (lactic/glycolic) acid and DPPC liposome nanoparticles in the in vitro treatment of renal cell carcinoma. Liu J; Boonkaew B; Arora J; Mandava SH; Maddox MM; Chava S; Callaghan C; He J; Dash S; John VT; Lee BR J Pharm Sci; 2015 Mar; 104(3):1187-96. PubMed ID: 25573425 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]