BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

502 related articles for article (PubMed ID: 26845076)

  • 1. Improved cell infiltration of electrospun nanofiber mats for layered tissue constructs.
    Mahjour SB; Sefat F; Polunin Y; Wang L; Wang H
    J Biomed Mater Res A; 2016 Jun; 104(6):1479-88. PubMed ID: 26845076
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The influence of specimen thickness and alignment on the material and failure properties of electrospun polycaprolactone nanofiber mats.
    Mubyana K; Koppes RA; Lee KL; Cooper JA; Corr DT
    J Biomed Mater Res A; 2016 Nov; 104(11):2794-800. PubMed ID: 27355844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Acrylonitrile and Pullulan Based Nanofiber Mats as Easily Accessible Scaffolds for 3D Skin Cell Models Containing Primary Cells.
    Rimann M; Jüngel A; Mousavi S; Moeschlin N; Calcagni M; Wuertz-Kozak K; Brunner F; Dudli S; Distler O; Adlhart C
    Cells; 2022 Jan; 11(3):. PubMed ID: 35159255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrospun nanofiber meshes with tailored architectures and patterns as potential tissue-engineering scaffolds.
    Wang Y; Wang G; Chen L; Li H; Yin T; Wang B; Lee JC; Yu Q
    Biofabrication; 2009 Mar; 1(1):015001. PubMed ID: 20811096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H; Huang J; Yu J; Liu S; Gu P
    Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanofiber enabled layer-by-layer approach toward three-dimensional tissue formation.
    Yang X; Shah JD; Wang H
    Tissue Eng Part A; 2009 Apr; 15(4):945-56. PubMed ID: 18788981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cardiomyogenic differentiation of human bone marrow-derived mesenchymal stem cell spheroids within electrospun collagen nanofiber mats.
    Joshi J; Brennan D; Beachley V; Kothapalli CR
    J Biomed Mater Res A; 2018 Dec; 106(12):3303-3312. PubMed ID: 30242963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Expansion of Two-dimension Electrospun Nanofiber Mats into Three-dimension Scaffolds.
    Keit E; Chen S; Wang H; Xie J
    J Vis Exp; 2019 Jan; (143):. PubMed ID: 30663697
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Patterned and functionalized nanofiber scaffolds in three-dimensional hydrogel constructs enhance neurite outgrowth and directional control.
    McMurtrey RJ
    J Neural Eng; 2014 Dec; 11(6):066009. PubMed ID: 25358624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO
    Jiang J; Chen S; Wang H; Carlson MA; Gombart AF; Xie J
    Acta Biomater; 2018 Mar; 68():237-248. PubMed ID: 29269334
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of large pores in electrospun nanofibrous scaffolds for cellular infiltration: a review.
    Zhong S; Zhang Y; Lim CT
    Tissue Eng Part B Rev; 2012 Apr; 18(2):77-87. PubMed ID: 21902623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The support of bone marrow stromal cell differentiation by airbrushed nanofiber scaffolds.
    Tutak W; Sarkar S; Lin-Gibson S; Farooque TM; Jyotsnendu G; Wang D; Kohn J; Bolikal D; Simon CG
    Biomaterials; 2013 Mar; 34(10):2389-98. PubMed ID: 23312903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of nanoscale and multiscale PCL/gelatin scaffolds prepared by disc-electrospinning.
    Li D; Chen W; Sun B; Li H; Wu T; Ke Q; Huang C; Ei-Hamshary H; Al-Deyab SS; Mo X
    Colloids Surf B Biointerfaces; 2016 Oct; 146():632-41. PubMed ID: 27429297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanofiber size-dependent sensitivity of fibroblast directionality to the methodology for scaffold alignment.
    Chaurey V; Block F; Su YH; Chiang PC; Botchwey E; Chou CF; Swami NS
    Acta Biomater; 2012 Nov; 8(11):3982-90. PubMed ID: 22789616
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering.
    Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D tissue formation by stacking detachable cell sheets formed on nanofiber mesh.
    Kim MS; Lee B; Kim HN; Bang S; Yang HS; Kang SM; Suh KY; Park SH; Jeon NL
    Biofabrication; 2017 Mar; 9(1):015029. PubMed ID: 28332479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tissue engineered plant extracts as nanofibrous wound dressing.
    Jin G; Prabhakaran MP; Kai D; Annamalai SK; Arunachalam KD; Ramakrishna S
    Biomaterials; 2013 Jan; 34(3):724-34. PubMed ID: 23111334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of the osteogenesis of pre-osteoblasts by spatial arrangement of electrospun nanofibers in two- and three-dimensional environments.
    Chen X; Fu X; Shi JG; Wang H
    Nanomedicine; 2013 Nov; 9(8):1283-92. PubMed ID: 23665421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrospun nanoyarn seeded with myoblasts induced from placental stem cells for the application of stress urinary incontinence sling: An in vitro study.
    Zhang K; Guo X; Li Y; Fu Q; Mo X; Nelson K; Zhao W
    Colloids Surf B Biointerfaces; 2016 Aug; 144():21-32. PubMed ID: 27060665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transforming Nanofiber Mats into Hierarchical Scaffolds with Graded Changes in Porosity and/or Nanofiber Alignment.
    Li H; Wu T; Xue J; Ke Q; Xia Y
    Macromol Rapid Commun; 2020 Feb; 41(3):e1900579. PubMed ID: 31867797
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.