BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 26845253)

  • 1. Anomer-Specific Recognition and Dynamics in a Fucose-Binding Lectin.
    Antonik PM; Volkov AN; Broder UN; Re DL; van Nuland NA; Crowley PB
    Biochemistry; 2016 Mar; 55(8):1195-203. PubMed ID: 26845253
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Production, properties and specificity of a new bacterial L-fucose- and D-arabinose-binding lectin of the plant aggressive pathogen Ralstonia solanacearum, and its comparison to related plant and microbial lectins.
    Sudakevitz D; Imberty A; Gilboa-Garber N
    J Biochem; 2002 Aug; 132(2):353-8. PubMed ID: 12153735
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new Ralstonia solanacearum high-affinity mannose-binding lectin RS-IIL structurally resembling the Pseudomonas aeruginosa fucose-specific lectin PA-IIL.
    Sudakevitz D; Kostlánová N; Blatman-Jan G; Mitchell EP; Lerrer B; Wimmerová M; Katcoff DJ; Imberty A; Gilboa-Garber N
    Mol Microbiol; 2004 May; 52(3):691-700. PubMed ID: 15101976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The fucose-binding lectin from Ralstonia solanacearum. A new type of beta-propeller architecture formed by oligomerization and interacting with fucoside, fucosyllactose, and plant xyloglucan.
    Kostlánová N; Mitchell EP; Lortat-Jacob H; Oscarson S; Lahmann M; Gilboa-Garber N; Chambat G; Wimmerová M; Imberty A
    J Biol Chem; 2005 Jul; 280(30):27839-49. PubMed ID: 15923179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unusual entropy-driven affinity of Chromobacterium violaceum lectin CV-IIL toward fucose and mannose.
    Pokorná M; Cioci G; Perret S; Rebuffet E; Kostlánová N; Adam J; Gilboa-Garber N; Mitchell EP; Imberty A; Wimmerová M
    Biochemistry; 2006 Jun; 45(24):7501-10. PubMed ID: 16768446
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In silico mutagenesis and docking study of Ralstonia solanacearum RSL lectin: performance of docking software to predict saccharide binding.
    Mishra SK; Adam J; Wimmerová M; Koča J
    J Chem Inf Model; 2012 May; 52(5):1250-61. PubMed ID: 22506916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production and properties of the native Chromobacterium violaceum fucose-binding lectin (CV-IIL) compared to homologous lectins of Pseudomonas aeruginosa (PA-IIL) and Ralstonia solanacearum (RS-IIL).
    Zinger-Yosovich K; Sudakevitz D; Imberty A; Garber NC; Gilboa-Garber N
    Microbiology (Reading); 2006 Feb; 152(Pt 2):457-463. PubMed ID: 16436433
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction of lectin valency drastically changes glycolipid dynamics in membranes but not surface avidity.
    Arnaud J; Claudinon J; Tröndle K; Trovaslet M; Larson G; Thomas A; Varrot A; Römer W; Imberty A; Audfray A
    ACS Chem Biol; 2013 Sep; 8(9):1918-24. PubMed ID: 23855446
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Biomimetic Synthetic Receptor Selectively Recognising Fucose in Water.
    Francesconi O; Martinucci M; Badii L; Nativi C; Roelens S
    Chemistry; 2018 May; 24(26):6828-6836. PubMed ID: 29508931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stacking interactions between carbohydrate and protein quantified by combination of theoretical and experimental methods.
    Wimmerová M; Kozmon S; Nečasová I; Mishra SK; Komárek J; Koča J
    PLoS One; 2012; 7(10):e46032. PubMed ID: 23056230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crystal structure of fucose-specific lectin from Aleuria aurantia binding ligands at three of its five sugar recognition sites.
    Fujihashi M; Peapus DH; Kamiya N; Nagata Y; Miki K
    Biochemistry; 2003 Sep; 42(38):11093-9. PubMed ID: 14503859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The binding of fucose-containing glycoproteins by hepatic lectins. The binding specificity of the rat liver fucose lectin.
    Lehrman MA; Haltiwanger RS; Hill RL
    J Biol Chem; 1986 Jun; 261(16):7426-32. PubMed ID: 3711094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new fungal lectin recognizing alpha(1-6)-linked fucose in the N-glycan.
    Oda Y; Senaha T; Matsuno Y; Nakajima K; Naka R; Kinoshita M; Honda E; Furuta I; Kakehi K
    J Biol Chem; 2003 Aug; 278(34):32439-47. PubMed ID: 12788923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for mannose recognition by a lectin from opportunistic bacteria Burkholderia cenocepacia.
    Lameignere E; Malinovská L; Sláviková M; Duchaud E; Mitchell EP; Varrot A; Sedo O; Imberty A; Wimmerová M
    Biochem J; 2008 Apr; 411(2):307-18. PubMed ID: 18215132
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Orientation of sugars bound to the principal C-type carbohydrate-recognition domain of the macrophage mannose receptor.
    Hitchen PG; Mullin NP; Taylor ME
    Biochem J; 1998 Aug; 333 ( Pt 3)(Pt 3):601-8. PubMed ID: 9677318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Six independent fucose-binding sites in the crystal structure of Aspergillus oryzae lectin.
    Makyio H; Shimabukuro J; Suzuki T; Imamura A; Ishida H; Kiso M; Ando H; Kato R
    Biochem Biophys Res Commun; 2016 Aug; 477(3):477-82. PubMed ID: 27318092
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin.
    Wimmerova M; Mitchell E; Sanchez JF; Gautier C; Imberty A
    J Biol Chem; 2003 Jul; 278(29):27059-67. PubMed ID: 12732625
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational prediction of monosaccharide binding free energies to lectins with linear interaction energy models.
    Mishra SK; Sund J; Åqvist J; Koča J
    J Comput Chem; 2012 Nov; 33(29):2340-50. PubMed ID: 22847637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode of molecular recognition of L-fucose by fucose-binding legume lectins.
    Thomas CJ; Surolia A
    Biochem Biophys Res Commun; 2000 Feb; 268(2):262-7. PubMed ID: 10679191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The mannose-specific bulb lectin from Galanthus nivalis (snowdrop) binds mono- and dimannosides at distinct sites. Structure analysis of refined complexes at 2.3 A and 3.0 A resolution.
    Hester G; Wright CS
    J Mol Biol; 1996 Oct; 262(4):516-31. PubMed ID: 8893860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.