These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 26845437)

  • 1. Persistent Chaos of Measles Epidemics in the Prevaccination United States Caused by a Small Change in Seasonal Transmission Patterns.
    Dalziel BD; Bjørnstad ON; van Panhuis WG; Burke DS; Metcalf CJ; Grenfell BT
    PLoS Comput Biol; 2016 Feb; 12(2):e1004655. PubMed ID: 26845437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting unobserved exposures from seasonal epidemic data.
    Forgoston E; Schwartz IB
    Bull Math Biol; 2013 Sep; 75(9):1450-71. PubMed ID: 23729314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rural-urban gradient in seasonal forcing of measles transmission in Niger.
    Ferrari MJ; Djibo A; Grais RF; Bharti N; Grenfell BT; Bjornstad ON
    Proc Biol Sci; 2010 Sep; 277(1695):2775-82. PubMed ID: 20427338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciting chaos with noise: unexpected dynamics in epidemic outbreaks.
    Billings L; Schwartz IB
    J Math Biol; 2002 Jan; 44(1):31-48. PubMed ID: 11942524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating enhanced prevaccination measles transmission hotspots in the context of cross-scale dynamics.
    Becker AD; Birger RB; Teillant A; Gastanaduy PA; Wallace GS; Grenfell BT
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):14595-14600. PubMed ID: 27872300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predictability in a highly stochastic system: final size of measles epidemics in small populations.
    Caudron Q; Mahmud AS; Metcalf CJ; Gottfreðsson M; Viboud C; Cliff AD; Grenfell BT
    J R Soc Interface; 2015 Jan; 12(102):20141125. PubMed ID: 25411411
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deterministic and stochastic models for the seasonal variability of measles transmission.
    Mollison D; Din SU
    Math Biosci; 1993; 117(1-2):155-77. PubMed ID: 8400572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Seasonality and period-doubling bifurcations in an epidemic model.
    Aron JL; Schwartz IB
    J Theor Biol; 1984 Oct; 110(4):665-79. PubMed ID: 6521486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The dynamics of measles in sub-Saharan Africa.
    Ferrari MJ; Grais RF; Bharti N; Conlan AJ; Bjørnstad ON; Wolfson LJ; Guerin PJ; Djibo A; Grenfell BT
    Nature; 2008 Feb; 451(7179):679-84. PubMed ID: 18256664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaotic stochasticity: a ubiquitous source of unpredictability in epidemics.
    Rand DA; Wilson HB
    Proc Biol Sci; 1991 Nov; 246(1316):179-84. PubMed ID: 1685243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measles in England and Wales--I: An analysis of factors underlying seasonal patterns.
    Fine PE; Clarkson JA
    Int J Epidemiol; 1982 Mar; 11(1):5-14. PubMed ID: 7085179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics.
    Olsen LF; Schaffer WM
    Science; 1990 Aug; 249(4968):499-504. PubMed ID: 2382131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact on Epidemic Measles of Vaccination Campaigns Triggered by Disease Outbreaks or Serosurveys: A Modeling Study.
    Lessler J; Metcalf CJ; Cutts FT; Grenfell BT
    PLoS Med; 2016 Oct; 13(10):e1002144. PubMed ID: 27727285
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A competing-risks model explains hierarchical spatial coupling of measles epidemics en route to national elimination.
    Lau MSY; Becker AD; Korevaar HM; Caudron Q; Shaw DJ; Metcalf CJE; Bjørnstad ON; Grenfell BT
    Nat Ecol Evol; 2020 Jul; 4(7):934-939. PubMed ID: 32341514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple model for complex dynamical transitions in epidemics.
    Earn DJ; Rohani P; Bolker BM; Grenfell BT
    Science; 2000 Jan; 287(5453):667-70. PubMed ID: 10650003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patterns of density dependence in measles dynamics.
    Finkenstädt B; Keeling M; Grenfell B
    Proc Biol Sci; 1998 May; 265(1398):753-62. PubMed ID: 9628034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vaccination Achievements of Cuba Versus the United States Exposed by the 2019 Measles Epidemic.
    Erwin PC; Linares-Pérez N; Verez-Bencomo V
    Am J Public Health; 2020 Apr; 110(4):467-469. PubMed ID: 32159983
    [No Abstract]   [Full Text] [Related]  

  • 18. Stochastic amplification in an epidemic model with seasonal forcing.
    Black AJ; McKane AJ
    J Theor Biol; 2010 Nov; 267(1):85-94. PubMed ID: 20723547
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modelling of infectious diseases for providing signal of epidemics: a measles case study in Bangladesh.
    Sharmin S; Rayhan I
    J Health Popul Nutr; 2011 Dec; 29(6):567-73. PubMed ID: 22283030
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Epidemiology and prevention of measles in the United States: 30 years of vaccination].
    Chauvin P
    Rev Epidemiol Sante Publique; 1995; 43(1):61-71. PubMed ID: 7892518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.