These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 26845482)

  • 1. Hydrophilicity improvement of mercerized bacterial cellulose films by polyethylene glycol graft.
    da Silva R; Sierakowski MR; Bassani HP; Zawadzki SF; Pirich CL; Ono L; de Freitas RA
    Int J Biol Macromol; 2016 May; 86():599-605. PubMed ID: 26845482
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface modification of polypropylene membrane by polyethylene glycol graft polymerization.
    Abednejad AS; Amoabediny G; Ghaee A
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():443-50. PubMed ID: 25063140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, characterizations and biocompatibility of alternating block polyurethanes based on P3/4HB and PPG-PEG-PPG.
    Li G; Li P; Qiu H; Li D; Su M; Xu K
    J Biomed Mater Res A; 2011 Jul; 98(1):88-99. PubMed ID: 21538829
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Polyethylene glycol grafted polyethylene: a versatile platform for nonmigratory active packaging applications.
    Barish JA; Goddard JM
    J Food Sci; 2011; 76(9):E586-91. PubMed ID: 22416704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity.
    Cheng D; Wen Y; Wang L; An X; Zhu X; Ni Y
    Carbohydr Polym; 2015 Jun; 123():157-63. PubMed ID: 25843847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation behavior and biocompatibility of PEG/PANI-derived polyurethane co-polymers.
    Luo YL; Nan YF; Xu F; Chen YS; Zhao P
    J Biomater Sci Polym Ed; 2010; 21(8-9):1143-72. PubMed ID: 20507713
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis, characterization and biocompatibility of biodegradable elastomeric poly(ether-ester urethane)s Based on Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) and Poly(ethylene glycol) via melting polymerization.
    Li Z; Yang X; Wu L; Chen Z; Lin Y; Xu K; Chen GQ
    J Biomater Sci Polym Ed; 2009; 20(9):1179-202. PubMed ID: 19520007
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-barrier coated bacterial cellulose nanowhiskers films with reduced moisture sensitivity.
    Martínez-Sanz M; Lopez-Rubio A; Lagaron JM
    Carbohydr Polym; 2013 Oct; 98(1):1072-82. PubMed ID: 23987449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials.
    Fujisawa S; Saito T; Kimura S; Iwata T; Isogai A
    Biomacromolecules; 2013 May; 14(5):1541-6. PubMed ID: 23540813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrophobic modification of cellulose isolated from Agave angustifolia fibre by graft copolymerisation using methyl methacrylate.
    Rosli NA; Ahmad I; Abdullah I; Anuar FH; Mohamed F
    Carbohydr Polym; 2015 Jul; 125():69-75. PubMed ID: 25857961
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anhydric maleic functionalization and polyethylene glycol grafting of lactide-co-trimethylene carbonate copolymers.
    Díaz A; Del Valle L; Franco L; Sarasua JR; Estrany F; Puiggalí J
    Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():517-28. PubMed ID: 25063149
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of molecular weight on synthesis and surface morphology of high-density poly(ethylene glycol) grafted layers.
    Zdyrko B; Varshney SK; Luzinov I
    Langmuir; 2004 Aug; 20(16):6727-35. PubMed ID: 15274578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Size-selective protein adsorption to polystyrene surfaces by self-assembled grafted poly(ethylene glycols) with varied chain lengths.
    Lazos D; Franzka S; Ulbricht M
    Langmuir; 2005 Sep; 21(19):8774-84. PubMed ID: 16142960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Honeycomb films of cellulose azide: molecular structure and formation of porous films.
    Xu WZ; Kadla JF
    Langmuir; 2013 Jan; 29(2):727-33. PubMed ID: 23256786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Steric stabilization of "charge-free" cellulose nanowhiskers by grafting of poly(ethylene glycol).
    Araki J; Mishima S
    Molecules; 2014 Dec; 20(1):169-84. PubMed ID: 25547722
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemical modification of poly(vinyl chloride) resin using poly(ethylene glycol) to improve blood compatibility.
    Balakrishnan B; Kumar DS; Yoshida Y; Jayakrishnan A
    Biomaterials; 2005 Jun; 26(17):3495-502. PubMed ID: 15621239
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial cellulose gels with high mechanical strength.
    Numata Y; Sakata T; Furukawa H; Tajima K
    Mater Sci Eng C Mater Biol Appl; 2015 Feb; 47():57-62. PubMed ID: 25492172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of hydrophobically end-capped poly(ethylene glycol) on cellulose.
    Holappa S; Kontturi KS; Salminen A; Seppälä J; Laine J
    Langmuir; 2013 Nov; 29(45):13750-9. PubMed ID: 24117230
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils.
    Qi ZD; Saito T; Fan Y; Isogai A
    Biomacromolecules; 2012 Feb; 13(2):553-8. PubMed ID: 22251371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-strength cellulose/poly(ethylene glycol) gels.
    Liang S; Wu J; Tian H; Zhang L; Xu J
    ChemSusChem; 2008; 1(6):558-63. PubMed ID: 18702155
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.