BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 26845569)

  • 1. Ferrous iron and α-ketoglutarate-dependent dioxygenases in the biosynthesis of microbial natural products.
    Wu LF; Meng S; Tang GL
    Biochim Biophys Acta; 2016 May; 1864(5):453-70. PubMed ID: 26845569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Fe(II)/α-ketoglutarate-dependent taurine dioxygenases from Pseudomonas putida and Escherichia coli are tetramers.
    Knauer SH; Hartl-Spiegelhauer O; Schwarzinger S; Hänzelmann P; Dobbek H
    FEBS J; 2012 Mar; 279(5):816-31. PubMed ID: 22221834
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first direct characterization of a high-valent iron intermediate in the reaction of an alpha-ketoglutarate-dependent dioxygenase: a high-spin FeIV complex in taurine/alpha-ketoglutarate dioxygenase (TauD) from Escherichia coli.
    Price JC; Barr EW; Tirupati B; Bollinger JM; Krebs C
    Biochemistry; 2003 Jun; 42(24):7497-508. PubMed ID: 12809506
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oxygen activation by nonheme iron(II) complexes: alpha-keto carboxylate versus carboxylate.
    Mehn MP; Fujisawa K; Hegg EL; Que L
    J Am Chem Soc; 2003 Jul; 125(26):7828-42. PubMed ID: 12823001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state and transient kinetic analyses of taurine/alpha-ketoglutarate dioxygenase: effects of oxygen concentration, alternative sulfonates, and active-site variants on the FeIV-oxo intermediate.
    Grzyska PK; Ryle MJ; Monterosso GR; Liu J; Ballou DP; Hausinger RP
    Biochemistry; 2005 Mar; 44(10):3845-55. PubMed ID: 15751960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly selective but multifunctional oxygenases in secondary metabolism.
    Cochrane RV; Vederas JC
    Acc Chem Res; 2014 Oct; 47(10):3148-61. PubMed ID: 25250512
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Harnessing Fe(II)/α-ketoglutarate-dependent oxygenases for structural diversification of fungal meroterpenoids.
    Tao H; Abe I
    Curr Opin Biotechnol; 2022 Oct; 77():102763. PubMed ID: 35878474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Recent examples of α-ketoglutarate-dependent mononuclear non-haem iron enzymes in natural product biosyntheses.
    Gao SS; Naowarojna N; Cheng R; Liu X; Liu P
    Nat Prod Rep; 2018 Aug; 35(8):792-837. PubMed ID: 29932179
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomimetic aryl hydroxylation derived from alkyl hydroperoxide at a nonheme iron center. Evidence for an Fe(IV)=O oxidant.
    Jensen MP; Lange SJ; Mehn MP; Que EL; Que L
    J Am Chem Soc; 2003 Feb; 125(8):2113-28. PubMed ID: 12590539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis.
    Zwick CR; Renata H
    Nat Prod Rep; 2020 Aug; 37(8):1065-1079. PubMed ID: 32055818
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Advances in hydroxylation of hydrophobic amino acid].
    Sun D; Cheng X; Guo Q; Xu P; Zhu Z; Qin H; Lu F
    Sheng Wu Gong Cheng Xue Bao; 2018 Jul; 34(7):1046-1056. PubMed ID: 30058304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural Diversification of Andiconin-Derived Natural Products by α-Ketoglutarate-Dependent Dioxygenases.
    Bai T; Matsuda Y; Tao H; Mori T; Zhang Y; Abe I
    Org Lett; 2020 Jun; 22(11):4311-4315. PubMed ID: 32402203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Catalytic Mechanisms of Fe(II)- and 2-Oxoglutarate-dependent Oxygenases.
    Martinez S; Hausinger RP
    J Biol Chem; 2015 Aug; 290(34):20702-20711. PubMed ID: 26152721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of naphthalene dioxygenase: side-on binding of dioxygen to iron.
    Karlsson A; Parales JV; Parales RE; Gibson DT; Eklund H; Ramaswamy S
    Science; 2003 Feb; 299(5609):1039-42. PubMed ID: 12586937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure of the non-haem iron halogenase SyrB2 in syringomycin biosynthesis.
    Blasiak LC; Vaillancourt FH; Walsh CT; Drennan CL
    Nature; 2006 Mar; 440(7082):368-71. PubMed ID: 16541079
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iron(II) complexes with bio-inspired N,N,O ligands as oxidation catalysts: olefin epoxidation and cis-dihydroxylation.
    Bruijnincx PC; Buurmans IL; Gosiewska S; Moelands MA; Lutz M; Spek AL; van Koten G; Klein Gebbink RJ
    Chemistry; 2008; 14(4):1228-37. PubMed ID: 18022966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure analysis of the oxygen-activation mechanism by Fe(II)- and α-ketoglutarate (αKG)-dependent dioxygenases.
    Ye S; Riplinger C; Hansen A; Krebs C; Bollinger JM; Neese F
    Chemistry; 2012 May; 18(21):6555-67. PubMed ID: 22511515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactivity of an iron-oxygen oxidant generated upon oxidative decarboxylation of biomimetic iron(II) α-hydroxy acid complexes.
    Paria S; Chatterjee S; Paine TK
    Inorg Chem; 2014 Mar; 53(6):2810-21. PubMed ID: 24627956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characteristics and biotechnology applications of aliphatic amino acid hydroxylases belonging to the Fe(II)/α-ketoglutarate-dependent dioxygenase superfamily.
    Hibi M; Ogawa J
    Appl Microbiol Biotechnol; 2014 May; 98(9):3869-76. PubMed ID: 24682483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence for hydrogen abstraction from C1 of taurine by the high-spin Fe(IV) intermediate detected during oxygen activation by taurine:alpha-ketoglutarate dioxygenase (TauD).
    Price JC; Barr EW; Glass TE; Krebs C; Bollinger JM
    J Am Chem Soc; 2003 Oct; 125(43):13008-9. PubMed ID: 14570457
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.