BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 26845641)

  • 1. Programmably Shaped Carbon Nanostructure from Shape-Conserving Carbonization of DNA.
    Zhou F; Sun W; Ricardo KB; Wang D; Shen J; Yin P; Liu H
    ACS Nano; 2016 Mar; 10(3):3069-77. PubMed ID: 26845641
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct Nanofabrication Using DNA Nanostructure.
    Zhou F; Liu H
    Methods Mol Biol; 2017; 1500():217-235. PubMed ID: 27813011
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal stripping of supramolecular structures: C60 nanorods.
    Mannsberger M; Kukovecz A; Georgakilas V; Rechthaler J; Schalko J; Hasi F; Allmaier G; Prato M; Kuzmany H
    J Nanosci Nanotechnol; 2005 Feb; 5(2):198-203. PubMed ID: 15853137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale growth and patterning of inorganic oxides using DNA nanostructure templates.
    Surwade SP; Zhou F; Wei B; Sun W; Powell A; O'Donnell C; Yin P; Liu H
    J Am Chem Soc; 2013 May; 135(18):6778-81. PubMed ID: 23574340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of geometric nanostructures on the absorption edges of 1-D and 2-D TiO₂ fabricated by atomic layer deposition.
    Chang YH; Liu CM; Cheng HE; Chen C
    ACS Appl Mater Interfaces; 2013 May; 5(9):3549-55. PubMed ID: 23621320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermally induced transformations of amorphous carbon nanostructures fabricated by electron beam induced deposition.
    Kulkarni DD; Rykaczewski K; Singamaneni S; Kim S; Fedorov AG; Tsukruk VV
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):710-20. PubMed ID: 21319745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Profile evolution for conformal atomic layer deposition over nanotopography.
    Cleveland ER; Banerjee P; Perez I; Lee SB; Rubloff GW
    ACS Nano; 2010 Aug; 4(8):4637-44. PubMed ID: 20731445
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observing and Controlling the Folding Pathway of DNA Origami at the Nanoscale.
    Wah JL; David C; Rudiuk S; Baigl D; Estevez-Torres A
    ACS Nano; 2016 Feb; 10(2):1978-87. PubMed ID: 26795025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Graphene-Encapsulated DNA Nanostructure: Preservation of Topographic Features at High Temperature and Site-Specific Oxidation of Graphene.
    Ricardo KB; Liu H
    Langmuir; 2018 Dec; 34(49):15045-15054. PubMed ID: 30336059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrically conductive gold- and copper-metallized DNA origami nanostructures.
    Geng Y; Pearson AC; Gates EP; Uprety B; Davis RC; Harb JN; Woolley AT
    Langmuir; 2013 Mar; 29(10):3482-90. PubMed ID: 23419143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing the stability of DNA nanostructure templates by atomic layer deposition of Al
    Kim H; Arbutina K; Xu A; Liu H
    Beilstein J Nanotechnol; 2017; 8():2363-2375. PubMed ID: 29181293
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A well-ordered flower-like gold nanostructure for integrated sensors via surface-enhanced Raman scattering.
    Kim JH; Kang T; Yoo SM; Lee SY; Kim B; Choi YK
    Nanotechnology; 2009 Jun; 20(23):235302. PubMed ID: 19448293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DNA nanostructure meets nanofabrication.
    Zhang G; Surwade SP; Zhou F; Liu H
    Chem Soc Rev; 2013 Apr; 42(7):2488-96. PubMed ID: 23059622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of graphitic carbon nanostructures with controllable size, shape, and position.
    Du R; Ssenyange S; Aktary M; McDermott MT
    Small; 2009 May; 5(10):1162-8. PubMed ID: 19235195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A robust DNA framework for single molecule observation with atomic force microscope.
    Kuzuya A; Komiyama M
    Nucleic Acids Symp Ser (Oxf); 2007; (51):331-2. PubMed ID: 18029721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous nanoripple formation on metallic templates.
    dos Santos Claro PC; Castez MF; Schilardi PL; Luque NB; Leiva EP; Salvarezza RC
    ACS Nano; 2008 Dec; 2(12):2531-9. PubMed ID: 19206289
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA Study Using DNA Nanotechnology.
    Tadakuma H; Masubuchi T; Ueda T
    Prog Mol Biol Transl Sci; 2016; 139():121-63. PubMed ID: 26970193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Irreversible and reversible structural deformation and electromechanical behavior of carbon nanohorns probed by conductive AFM.
    Xu J; Shingaya Y; Tomimoto H; Kubo O; Nakayama T
    Small; 2011 May; 7(9):1169-74. PubMed ID: 21433282
    [No Abstract]   [Full Text] [Related]  

  • 19. Synthesis of a pillared graphene nanostructure: a counterpart of three-dimensional carbon architectures.
    Paul RK; Ghazinejad M; Penchev M; Lin J; Ozkan M; Ozkan CS
    Small; 2010 Oct; 6(20):2309-13. PubMed ID: 20862676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atomic layer deposition for biosensing applications.
    Graniel O; Weber M; Balme S; Miele P; Bechelany M
    Biosens Bioelectron; 2018 Dec; 122():147-159. PubMed ID: 30248642
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.