BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26845734)

  • 1. Remote-Controlled Release of Singlet Oxygen by the Plasmonic Heating of Endoperoxide-Modified Gold Nanorods: Towards a Paradigm Change in Photodynamic Therapy.
    Kolemen S; Ozdemir T; Lee D; Kim GM; Karatas T; Yoon J; Akkaya EU
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3606-10. PubMed ID: 26845734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gold nanorods as dual photo-sensitizing and imaging agents for two-photon photodynamic therapy.
    Zhao T; Shen X; Li L; Guan Z; Gao N; Yuan P; Yao SQ; Xu QH; Xu GQ
    Nanoscale; 2012 Dec; 4(24):7712-9. PubMed ID: 23132010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc phthalocyanines attached to gold nanorods for simultaneous hyperthermic and photodynamic therapies against melanoma in vitro.
    Freitas LF; Hamblin MR; Anzengruber F; Perussi JR; Ribeiro AO; Martins VCA; Plepis AMG
    J Photochem Photobiol B; 2017 Aug; 173():181-186. PubMed ID: 28595072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The conjugates of gold nanorods and chlorin e6 for enhancing the fluorescence detection and photodynamic therapy of cancers.
    Huang X; Tian XJ; Yang WL; Ehrenberg B; Chen JY
    Phys Chem Chem Phys; 2013 Oct; 15(38):15727-33. PubMed ID: 23575880
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy.
    Zhang Y; Qian J; Wang D; Wang Y; He S
    Angew Chem Int Ed Engl; 2013 Jan; 52(4):1148-51. PubMed ID: 23233455
    [No Abstract]   [Full Text] [Related]  

  • 6. First demonstration of gold nanorods-mediated photodynamic therapeutic destruction of tumors via near infra-red light activation.
    Vankayala R; Huang YK; Kalluru P; Chiang CS; Hwang KC
    Small; 2014 Apr; 10(8):1612-22. PubMed ID: 24339243
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Bifunctional Photosensitizer for Enhanced Fractional Photodynamic Therapy: Singlet Oxygen Generation in the Presence and Absence of Light.
    Turan IS; Yildiz D; Turksoy A; Gunaydin G; Akkaya EU
    Angew Chem Int Ed Engl; 2016 Feb; 55(8):2875-8. PubMed ID: 26799149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies.
    Wang B; Wang JH; Liu Q; Huang H; Chen M; Li K; Li C; Yu XF; Chu PK
    Biomaterials; 2014 Feb; 35(6):1954-66. PubMed ID: 24331707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid systems based on gold nanostructures and porphyrins as promising photosensitizers for photodynamic therapy.
    Ferreira DC; Monteiro CS; Chaves CR; Sáfar GAM; Moreira RL; Pinheiro MVB; Martins DCS; Ladeira LO; Krambrock K
    Colloids Surf B Biointerfaces; 2017 Feb; 150():297-307. PubMed ID: 28029548
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AlPcS
    Xin J; Wang S; Wang B; Wang J; Wang J; Zhang L; Xin B; Shen L; Zhang Z; Yao C
    Int J Nanomedicine; 2018; 13():2017-2036. PubMed ID: 29670347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-in-One Functional Silica Nanocarrier with Singlet Oxygen Generation, Storage/Release, and Self-Monitoring for Enhanced Fractional Photodynamic Therapy.
    Jiao L; Zhang X; Cui J; Peng X; Song F
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25750-25757. PubMed ID: 31245990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light.
    Vankayala R; Lin CC; Kalluru P; Chiang CS; Hwang KC
    Biomaterials; 2014 Jul; 35(21):5527-38. PubMed ID: 24731706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres.
    Chen R; Wang X; Yao X; Zheng X; Wang J; Jiang X
    Biomaterials; 2013 Nov; 34(33):8314-22. PubMed ID: 23896004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosensitization of singlet oxygen and in vivo photodynamic therapeutic effects mediated by PEGylated W(18)O(49) nanowires.
    Kalluru P; Vankayala R; Chiang CS; Hwang KC
    Angew Chem Int Ed Engl; 2013 Nov; 52(47):12332-6. PubMed ID: 24136871
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photodynamic Action of Single-Walled Carbon Nanotubes.
    Murakami T
    Chem Pharm Bull (Tokyo); 2017; 65(7):629-636. PubMed ID: 28674335
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.
    Cheng Y; Cheng H; Jiang C; Qiu X; Wang K; Huan W; Yuan A; Wu J; Hu Y
    Nat Commun; 2015 Nov; 6():8785. PubMed ID: 26525216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanorod enhanced two-photon excitation fluorescence of photosensitizers for two-photon imaging and photodynamic therapy.
    Zhao T; Yu K; Li L; Zhang T; Guan Z; Gao N; Yuan P; Li S; Yao SQ; Xu QH; Xu GQ
    ACS Appl Mater Interfaces; 2014 Feb; 6(4):2700-8. PubMed ID: 24483257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pyridone-containing phenalenone-based photosensitizer working both under light and in the dark for photodynamic therapy.
    Jing Y; Xu Q; Chen M; Shao X
    Bioorg Med Chem; 2019 Jun; 27(11):2201-2208. PubMed ID: 31040051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel TiO2/PEGDA hybrid hydrogel prepared in situ on tumor cells for effective photodynamic therapy.
    Zhang H; Shi R; Xie A; Li J; Chen L; Chen P; Li S; Huang F; Shen Y
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12317-22. PubMed ID: 24245666
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of various nanoparticles in photodynamic therapy and detection methods of singlet oxygen.
    Krajczewski J; Rucińska K; Townley HE; Kudelski A
    Photodiagnosis Photodyn Ther; 2019 Jun; 26():162-178. PubMed ID: 30914390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.