BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 26845734)

  • 21. Plasmon-mediated generation of reactive oxygen species from near-infrared light excited gold nanocages for photodynamic therapy in vitro.
    Gao L; Liu R; Gao F; Wang Y; Jiang X; Gao X
    ACS Nano; 2014 Jul; 8(7):7260-71. PubMed ID: 24992260
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biological Action of Singlet Molecular Oxygen from the Standpoint of Cell Signaling, Injury and Death.
    Fujii J; Soma Y; Matsuda Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241826
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of therapeutic Au-methylene blue nanoparticles for targeted photodynamic therapy of cervical cancer cells.
    Yu J; Hsu CH; Huang CC; Chang PY
    ACS Appl Mater Interfaces; 2015 Jan; 7(1):432-41. PubMed ID: 25494339
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The good, the bad, and the ugly - controlling singlet oxygen through design of photosensitizers and delivery systems for photodynamic therapy.
    Callaghan S; Senge MO
    Photochem Photobiol Sci; 2018 Nov; 17(11):1490-1514. PubMed ID: 29569665
    [TBL] [Abstract][Full Text] [Related]  

  • 25. S-nitrosocysteine-decorated PbS QDs/TiO2 nanotubes for enhanced production of singlet oxygen.
    Ratanatawanate C; Chyao A; Balkus KJ
    J Am Chem Soc; 2011 Mar; 133(10):3492-7. PubMed ID: 21341648
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates.
    Stuchinskaya T; Moreno M; Cook MJ; Edwards DR; Russell DA
    Photochem Photobiol Sci; 2011 May; 10(5):822-31. PubMed ID: 21455532
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo.
    Jang B; Park JY; Tung CH; Kim IH; Choi Y
    ACS Nano; 2011 Feb; 5(2):1086-94. PubMed ID: 21244012
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Formation of gold decorated porphyrin nanoparticles and evaluation of their photothermal and photodynamic activity.
    Chen RJ; Chen PC; Prasannan A; Vinayagam J; Huang CC; Chou PY; Weng CC; Tsai HC; Lin SY
    Mater Sci Eng C Mater Biol Appl; 2016 Jun; 63():678-85. PubMed ID: 27040265
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prostate-specific membrane antigen (PSMA) targeted singlet oxygen delivery
    Wang L; Tang L; Liu Y; Wu H; Liu Z; Li J; Pan Y; Akkaya EU
    Chem Commun (Camb); 2022 Feb; 58(12):1902-1905. PubMed ID: 35029263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Singlet oxygen and ROS in a new light: low-dose subcellular photodynamic treatment enhances proliferation at the single cell level.
    Blázquez-Castro A; Breitenbach T; Ogilby PR
    Photochem Photobiol Sci; 2014 Sep; 13(9):1235-40. PubMed ID: 25051122
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proof-of-principle for two-stage photodynamic therapy: hypoxia triggered release of singlet oxygen.
    Ayan S; Gunaydin G; Yesilgul-Mehmetcik N; Gedik ME; Seven O; Akkaya EU
    Chem Commun (Camb); 2020 Nov; 56(94):14793-14796. PubMed ID: 33196713
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coating gold nanorods with silica prevents the generation of reactive oxygen species under laser light irradiation for safe biomedical applications.
    Mitiche S; Gueffrache S; Marguet S; Audibert JF; Pansu RB; Palpant B
    J Mater Chem B; 2022 Jan; 10(4):589-597. PubMed ID: 34985476
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Laser beam controlled drug release from Ce6-gold nanorod composites in living cells: a FLIM study.
    Xu Y; He R; Lin D; Ji M; Chen J
    Nanoscale; 2015 Feb; 7(6):2433-41. PubMed ID: 25565649
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Combined effects of singlet oxygen and hydroxyl radical in photodynamic therapy with photostable bacteriochlorins: evidence from intracellular fluorescence and increased photodynamic efficacy in vitro.
    Dąbrowski JM; Arnaut LG; Pereira MM; Urbańska K; Simões S; Stochel G; Cortes L
    Free Radic Biol Med; 2012 Apr; 52(7):1188-200. PubMed ID: 22285766
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeted Singlet Oxygen Delivery: A Bioorthogonal Metabolic Shunt Linking Hypoxia to Fast Singlet Oxygen Release.
    Wu H; Wang L; Wang Y; Shao Y; Li G; Shao K; Akkaya EU
    Angew Chem Int Ed Engl; 2022 Nov; 61(47):e202210249. PubMed ID: 36082673
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gold nanorod-photosensitizer complex obtained by layer-by-layer method for photodynamic/photothermal therapy in vitro.
    Kim SB; Lee TH; Yoon I; Shim YK; Lee WK
    Chem Asian J; 2015 Mar; 10(3):563-7. PubMed ID: 25630881
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tat/HA2 Peptides Conjugated AuNR@pNIPAAm as a Photosensitizer Carrier for Near Infrared Triggered Photodynamic Therapy.
    Ye S; Kang N; Chen M; Wang C; Wang T; Wang Y; Liu Y; Li D; Ren L
    Mol Pharm; 2015 Jul; 12(7):2444-58. PubMed ID: 26031331
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Photothermal release of singlet oxygen from gold nanoparticles.
    Asadirad AM; Erno Z; Branda NR
    Chem Commun (Camb); 2013 Jun; 49(50):5639-41. PubMed ID: 23677062
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Poly(D, L-lactide-co-glycolide) nanoparticles as delivery agents for photodynamic therapy: enhancing singlet oxygen release and photototoxicity by surface PEG coating.
    Boix-Garriga E; Acedo P; Casadó A; Villanueva A; Stockert JC; Cañete M; Mora M; Sagristá ML; Nonell S
    Nanotechnology; 2015 Sep; 26(36):365104. PubMed ID: 26293792
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In vitro demonstration of the heavy-atom effect for photodynamic therapy.
    Gorman A; Killoran J; O'Shea C; Kenna T; Gallagher WM; O'Shea DF
    J Am Chem Soc; 2004 Sep; 126(34):10619-31. PubMed ID: 15327320
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.