These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 26846247)
1. Optimization of a combined electrocoagulation-electroflotation reactor. Jiménez C; Sáez C; Cañizares P; Rodrigo MA Environ Sci Pollut Res Int; 2016 May; 23(10):9700-11. PubMed ID: 26846247 [TBL] [Abstract][Full Text] [Related]
2. Treatment of slaughterhouse wastewater by electrocoagulation and electroflotation as a combined process: process optimization through response surface methodology. Akarsu C; Deveci EÜ; Gönen Ç; Madenli Ö Environ Sci Pollut Res Int; 2021 Jul; 28(26):34473-34488. PubMed ID: 33651288 [TBL] [Abstract][Full Text] [Related]
3. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes. Esfandyari Y; Mahdavi Y; Seyedsalehi M; Hoseini M; Safari GH; Ghozikali MG; Kamani H; Jaafari J Environ Sci Pollut Res Int; 2015 Apr; 22(8):6288-97. PubMed ID: 25408073 [TBL] [Abstract][Full Text] [Related]
4. Optimization of material and energy consumption for removal of Acid Red 14 by simultaneous electrocoagulation and electroflotation. Hooshmandfar A; Ayati B; Khodadadi Darban A Water Sci Technol; 2016; 73(1):192-202. PubMed ID: 26744951 [TBL] [Abstract][Full Text] [Related]
5. Removal turbidity and separation of heavy metals using electrocoagulation-electroflotation technique A case study. Merzouk B; Gourich B; Sekki A; Madani K; Chibane M J Hazard Mater; 2009 May; 164(1):215-22. PubMed ID: 18799259 [TBL] [Abstract][Full Text] [Related]
6. Techno-economical optimization of Reactive Blue 19 removal by combined electrocoagulation/coagulation process through MOPSO using RSM and ANFIS models. Taheri M; Alavi Moghaddam MR; Arami M J Environ Manage; 2013 Oct; 128():798-806. PubMed ID: 23867837 [TBL] [Abstract][Full Text] [Related]
7. Oily wastewater treatment by a continuous flow electrocoagulation reactor with polarity switch: Assessment of the relation between process variables and the aluminum released to the environment. Nascimento BZ; Muniz EP; Bueno Cotta AJ; Couto Oliveira FD; Sérgio da Silva Porto P J Environ Manage; 2023 Dec; 347():119072. PubMed ID: 37774662 [TBL] [Abstract][Full Text] [Related]
8. Optimization of the pretreatment of wastewater from a slaughterhouse and packing plant through electrocoagulation in a batch reactor. Orssatto F; Ferreira Tavares MH; Manente da Silva F; Eyng E; Farias Biassi B; Fleck L Environ Technol; 2017 Oct; 38(19):2465-2475. PubMed ID: 27892816 [TBL] [Abstract][Full Text] [Related]
9. Performance evaluation of a continuous bipolar electrocoagulation/electrooxidation-electroflotation (ECEO-EF) reactor designed for simultaneous removal of ammonia and phosphate from wastewater effluent. Mahvi AH; Ebrahimi SJ; Mesdaghinia A; Gharibi H; Sowlat MH J Hazard Mater; 2011 Sep; 192(3):1267-74. PubMed ID: 21741172 [TBL] [Abstract][Full Text] [Related]
10. Electrocoagulation and nanofiltration integrated process application in purification of bilge water using response surface methodology. Akarsu C; Ozay Y; Dizge N; Elif Gulsen H; Ates H; Gozmen B; Turabik M Water Sci Technol; 2016; 74(3):564-79. PubMed ID: 27508361 [TBL] [Abstract][Full Text] [Related]
11. Electrocoagulation with polarity switch for fast oil removal from oil in water emulsions. Gobbi LCA; Nascimento IL; Muniz EP; Rocha SMS; Porto PSS J Environ Manage; 2018 May; 213():119-125. PubMed ID: 29482092 [TBL] [Abstract][Full Text] [Related]
12. Experimental design approach applied to the elimination of crystal violet in water by electrocoagulation with Fe or Al electrodes. Durango-Usuga P; Guzmán-Duque F; Mosteo R; Vazquez MV; Peñuela G; Torres-Palma RA J Hazard Mater; 2010 Jul; 179(1-3):120-6. PubMed ID: 20303653 [TBL] [Abstract][Full Text] [Related]
13. Optimizing electrocoagulation process using experimental design for COD removal from unsanitary landfill leachate. Ogedey A; Tanyol M Water Sci Technol; 2017 Dec; 76(11-12):2907-2917. PubMed ID: 29210678 [TBL] [Abstract][Full Text] [Related]
15. Combination of electroflotation process and down-flow granular filtration to treat wastewater contaminated with oil. Nonato TCM; Schöntag JM; Burgardt T; Alves AAA; Broock WF; Dalsasso RL; Sens ML Environ Technol; 2018 Mar; 39(6):717-724. PubMed ID: 28326898 [TBL] [Abstract][Full Text] [Related]
16. Mercury(II) removal from water by electrocoagulation using aluminium and iron electrodes. Nanseu-Njiki CP; Tchamango SR; Ngom PC; Darchen A; Ngameni E J Hazard Mater; 2009 Sep; 168(2-3):1430-6. PubMed ID: 19349114 [TBL] [Abstract][Full Text] [Related]
17. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum. Nasution MA; Yaakob Z; Ali E; Tasirin SM; Abdullah SR J Environ Qual; 2011; 40(4):1332-9. PubMed ID: 21712603 [TBL] [Abstract][Full Text] [Related]
18. Removal of Acid Black 194 dye from water by electrocoagulation with aluminum anode. Vidal J; Villegas L; Peralta-Hernández JM; Salazar González R J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016; 51(4):289-96. PubMed ID: 26745322 [TBL] [Abstract][Full Text] [Related]
19. Review of pollutants removed by electrocoagulation and electrocoagulation/flotation processes. Emamjomeh MM; Sivakumar M J Environ Manage; 2009 Apr; 90(5):1663-79. PubMed ID: 19181438 [TBL] [Abstract][Full Text] [Related]
20. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor. Balla W; Essadki AH; Gourich B; Dassaa A; Chenik H; Azzi M J Hazard Mater; 2010 Dec; 184(1-3):710-716. PubMed ID: 20870356 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]