These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 26846325)
1. Reduced Mitochondrial Function in Human Huntington Disease Lymphoblasts is Not Due to Alterations in Cardiolipin Metabolism or Mitochondrial Supercomplex Assembly. Mejia EM; Chau S; Sparagna GC; Sipione S; Hatch GM Lipids; 2016 May; 51(5):561-9. PubMed ID: 26846325 [TBL] [Abstract][Full Text] [Related]
2. Expression of human monolysocardiolipin acyltransferase-1 improves mitochondrial function in Barth syndrome lymphoblasts. Mejia EM; Zegallai H; Bouchard ED; Banerji V; Ravandi A; Hatch GM J Biol Chem; 2018 May; 293(20):7564-7577. PubMed ID: 29563154 [TBL] [Abstract][Full Text] [Related]
3. Accelerated expansion of pathogenic mitochondrial DNA heteroplasmies in Huntington's disease. Wang Y; Guo X; Ye K; Orth M; Gu Z Proc Natl Acad Sci U S A; 2021 Jul; 118(30):. PubMed ID: 34301881 [TBL] [Abstract][Full Text] [Related]
4. Barth syndrome: cellular compensation of mitochondrial dysfunction and apoptosis inhibition due to changes in cardiolipin remodeling linked to tafazzin (TAZ) gene mutation. Gonzalvez F; D'Aurelio M; Boutant M; Moustapha A; Puech JP; Landes T; Arnauné-Pelloquin L; Vial G; Taleux N; Slomianny C; Wanders RJ; Houtkooper RH; Bellenguer P; Møller IM; Gottlieb E; Vaz FM; Manfredi G; Petit PX Biochim Biophys Acta; 2013 Aug; 1832(8):1194-206. PubMed ID: 23523468 [TBL] [Abstract][Full Text] [Related]
5. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts. Naia L; Ferreira IL; Cunha-Oliveira T; Duarte AI; Ribeiro M; Rosenstock TR; Laço MN; Ribeiro MJ; Oliveira CR; Saudou F; Humbert S; Rego AC Mol Neurobiol; 2015 Feb; 51(1):331-48. PubMed ID: 24841383 [TBL] [Abstract][Full Text] [Related]
7. HD CAG repeat implicates a dominant property of huntingtin in mitochondrial energy metabolism. Seong IS; Ivanova E; Lee JM; Choo YS; Fossale E; Anderson M; Gusella JF; Laramie JM; Myers RH; Lesort M; MacDonald ME Hum Mol Genet; 2005 Oct; 14(19):2871-80. PubMed ID: 16115812 [TBL] [Abstract][Full Text] [Related]
8. Drp1/Fis1-mediated mitochondrial fragmentation leads to lysosomal dysfunction in cardiac models of Huntington's disease. Joshi AU; Ebert AE; Haileselassie B; Mochly-Rosen D J Mol Cell Cardiol; 2019 Feb; 127():125-133. PubMed ID: 30550751 [TBL] [Abstract][Full Text] [Related]
9. Increased apoptosis of Huntington disease lymphoblasts associated with repeat length-dependent mitochondrial depolarization. Sawa A; Wiegand GW; Cooper J; Margolis RL; Sharp AH; Lawler JF; Greenamyre JT; Snyder SH; Ross CA Nat Med; 1999 Oct; 5(10):1194-8. PubMed ID: 10502825 [TBL] [Abstract][Full Text] [Related]
10. Berberine Inhibits Oxygen Consumption Rate Independent of Alteration in Cardiolipin Levels in H9c2 Cells. Chang W; Zhang M; Chen L; Hatch GM Lipids; 2017 Nov; 52(11):961-967. PubMed ID: 28942573 [TBL] [Abstract][Full Text] [Related]
11. Nature and cause of mitochondrial dysfunction in Huntington's disease: focusing on huntingtin and the striatum. Oliveira JM J Neurochem; 2010 Jul; 114(1):1-12. PubMed ID: 20403078 [TBL] [Abstract][Full Text] [Related]
12. Increased glucose metabolism and ATP level in brain tissue of Huntington's disease transgenic mice. Oláh J; Klivényi P; Gardián G; Vécsei L; Orosz F; Kovacs GG; Westerhoff HV; Ovádi J FEBS J; 2008 Oct; 275(19):4740-55. PubMed ID: 18721135 [TBL] [Abstract][Full Text] [Related]
16. Inhibitors of metabolism rescue cell death in Huntington's disease models. Varma H; Cheng R; Voisine C; Hart AC; Stockwell BR Proc Natl Acad Sci U S A; 2007 Sep; 104(36):14525-30. PubMed ID: 17726098 [TBL] [Abstract][Full Text] [Related]
17. Reduction in cardiolipin decreases mitochondrial spare respiratory capacity and increases glucose transport into and across human brain cerebral microvascular endothelial cells. Nguyen HM; Mejia EM; Chang W; Wang Y; Watson E; On N; Miller DW; Hatch GM J Neurochem; 2016 Oct; 139(1):68-80. PubMed ID: 27470495 [TBL] [Abstract][Full Text] [Related]
18. Role of mitochondrial dysfunction in the pathogenesis of Huntington's disease. Quintanilla RA; Johnson GV Brain Res Bull; 2009 Oct; 80(4-5):242-7. PubMed ID: 19622387 [TBL] [Abstract][Full Text] [Related]
19. Bioenergetic deficits in Huntington's disease iPSC-derived neural cells and rescue with glycolytic metabolites. HD iPSC Consortium Hum Mol Genet; 2020 Jul; 29(11):1757-1771. PubMed ID: 30768179 [TBL] [Abstract][Full Text] [Related]
20. Oxidative metabolism in YAC128 mouse model of Huntington's disease. Hamilton J; Pellman JJ; Brustovetsky T; Harris RA; Brustovetsky N Hum Mol Genet; 2015 Sep; 24(17):4862-78. PubMed ID: 26041817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]