These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 2684642)

  • 1. A conserved base pair within helix P4 of the Tetrahymena ribozyme helps to form the tertiary structure required for self-splicing.
    Flor PJ; Flanegan JB; Cech TR
    EMBO J; 1989 Nov; 8(11):3391-9. PubMed ID: 2684642
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the role of a secondary structure element at the 5'- and 3'-splice sites in group I intron self-splicing: the tetrahymena L-16 ScaI ribozyme reveals a new role of the G.U pair in self-splicing.
    Karbstein K; Lee J; Herschlag D
    Biochemistry; 2007 Apr; 46(16):4861-75. PubMed ID: 17385892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect.
    Karbstein K; Tang KH; Herschlag D
    RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-splicing of a group I intron reveals partitioning of native and misfolded RNA populations in yeast.
    Jackson SA; Koduvayur S; Woodson SA
    RNA; 2006 Dec; 12(12):2149-59. PubMed ID: 17135489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the Tetrahymena ribozyme: base triple sandwich and metal ion at the active site.
    Guo F; Gooding AR; Cech TR
    Mol Cell; 2004 Nov; 16(3):351-62. PubMed ID: 15525509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A kinetic and thermodynamic framework for the Azoarcus group I ribozyme reaction.
    Gleitsman KR; Herschlag DH
    RNA; 2014 Nov; 20(11):1732-46. PubMed ID: 25246656
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Snapshots of the first-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM.
    Zhang X; Li S; Pintilie G; Palo MZ; Zhang K
    Nucleic Acids Res; 2023 Feb; 51(3):1317-1325. PubMed ID: 36660826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Snapshots of the second-step self-splicing of Tetrahymena ribozyme revealed by cryo-EM.
    Li S; Palo MZ; Zhang X; Pintilie G; Zhang K
    Nat Commun; 2023 Mar; 14(1):1294. PubMed ID: 36928031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Group II intron folding under near-physiological conditions: collapsing to the near-native state.
    Fedorova O; Waldsich C; Pyle AM
    J Mol Biol; 2007 Mar; 366(4):1099-114. PubMed ID: 17196976
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exploring purine N7 interactions via atomic mutagenesis: the group I ribozyme as a case study.
    Forconi M; Benz-Moy T; Gleitsman KR; Ruben E; Metz C; Herschlag D
    RNA; 2012 Jun; 18(6):1222-9. PubMed ID: 22543863
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Moderate activity of RNA chaperone maximizes the yield of self-spliced pre-RNA in vivo.
    Song Y; Thirumalai D; Hyeon C
    Proc Natl Acad Sci U S A; 2022 Dec; 119(49):e2209422119. PubMed ID: 36442111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. How to Kinetically Dissect an RNA Machine.
    Das R; Russell R
    Biochemistry; 2021 Nov; 60(46):3485-3490. PubMed ID: 34492193
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A group II self-splicing intron from the brown alga Pylaiella littoralis is active at unusually low magnesium concentrations and forms populations of molecules with a uniform conformation.
    Costa M; Fontaine JM; Loiseaux-de Goër S; Michel F
    J Mol Biol; 1997 Dec; 274(3):353-64. PubMed ID: 9405145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Automated RNA tertiary structure prediction from secondary structure and low-resolution restraints.
    Seetin MG; Mathews DH
    J Comput Chem; 2011 Jul; 32(10):2232-44. PubMed ID: 21509787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Turning limited experimental information into 3D models of RNA.
    Flores SC; Altman RB
    RNA; 2010 Sep; 16(9):1769-78. PubMed ID: 20651028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of a group I intron splicing intermediate.
    Adams PL; Stahley MR; Gill ML; Kosek AB; Wang J; Strobel SA
    RNA; 2004 Dec; 10(12):1867-87. PubMed ID: 15547134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long-term evolution of the S788 fungal nuclear small subunit rRNA group I introns.
    Haugen P; Runge HJ; Bhattacharya D
    RNA; 2004 Jul; 10(7):1084-96. PubMed ID: 15208444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis of a light-regulated psbA intron reveals the importance of efficient splicing for photosynthetic growth.
    Lee J; Herrin DL
    Nucleic Acids Res; 2003 Aug; 31(15):4361-72. PubMed ID: 12888495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and development of a catalytic ribonucleoprotein.
    Atsumi S; Ikawa Y; Shiraishi H; Inoue T
    EMBO J; 2001 Oct; 20(19):5453-60. PubMed ID: 11574477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of novel forms of a functional domain within the Tetrahymena ribozyme.
    Williams KP; Imahori H; Fujimoto DN; Inoue T
    Nucleic Acids Res; 1994 Jun; 22(11):2003-9. PubMed ID: 8029006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.