BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 26846548)

  • 1. Heat stress redistributes blood flow in arteries of the brain during dynamic exercise.
    Sato K; Oue A; Yoneya M; Sadamoto T; Ogoh S
    J Appl Physiol (1985); 2016 Apr; 120(7):766-73. PubMed ID: 26846548
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperthermia modulates regional differences in cerebral blood flow to changes in CO2.
    Ogoh S; Sato K; Okazaki K; Miyamoto T; Hirasawa A; Shibasaki M
    J Appl Physiol (1985); 2014 Jul; 117(1):46-52. PubMed ID: 24790021
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The distribution of blood flow in the carotid and vertebral arteries during dynamic exercise in humans.
    Sato K; Ogoh S; Hirasawa A; Oue A; Sadamoto T
    J Physiol; 2011 Jun; 589(Pt 11):2847-56. PubMed ID: 21486813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal carotid, external carotid and vertebral artery blood flow responses to 3 days of head-out dry immersion.
    Ogoh S; Hirasawa A; de Abreu S; Denise P; Normand H
    Exp Physiol; 2017 Oct; 102(10):1278-1287. PubMed ID: 28744943
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential blood flow responses to CO₂ in human internal and external carotid and vertebral arteries.
    Sato K; Sadamoto T; Hirasawa A; Oue A; Subudhi AW; Miyazawa T; Ogoh S
    J Physiol; 2012 Jul; 590(14):3277-90. PubMed ID: 22526884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional changes in brain blood flow during severe passive hyperthermia: effects of PaCO2 and extracranial blood flow.
    Bain AR; Smith KJ; Lewis NC; Foster GE; Wildfong KW; Willie CK; Hartley GL; Cheung SS; Ainslie PN
    J Appl Physiol (1985); 2013 Sep; 115(5):653-9. PubMed ID: 23823149
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Blood flow in internal carotid and vertebral arteries during graded lower body negative pressure in humans.
    Ogoh S; Sato K; Okazaki K; Miyamoto T; Hirasawa A; Sadamoto T; Shibasaki M
    Exp Physiol; 2015 Mar; 100(3):259-66. PubMed ID: 25641216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of aging on the distribution of cerebral blood flow with postural changes and mild hyperthermia.
    Ota A; Takeda R; Imai D; Naghavi N; Kawai E; Saho K; Morita E; Suzuki Y; Yokoyama H; Miyagawa T; Okazaki K
    Eur J Appl Physiol; 2019 May; 119(5):1261-1272. PubMed ID: 30848357
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dehydration accelerates reductions in cerebral blood flow during prolonged exercise in the heat without compromising brain metabolism.
    Trangmar SJ; Chiesa ST; Llodio I; Garcia B; Kalsi KK; Secher NH; González-Alonso J
    Am J Physiol Heart Circ Physiol; 2015 Nov; 309(9):H1598-607. PubMed ID: 26371170
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for temperature-mediated regional increases in cerebral blood flow during exercise.
    Caldwell HG; Coombs GB; Howe CA; Hoiland RL; Patrician A; Lucas SJE; Ainslie PN
    J Physiol; 2020 Apr; 598(8):1459-1473. PubMed ID: 31912506
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood flow distribution during heat stress: cerebral and systemic blood flow.
    Ogoh S; Sato K; Okazaki K; Miyamoto T; Hirasawa A; Morimoto K; Shibasaki M
    J Cereb Blood Flow Metab; 2013 Dec; 33(12):1915-20. PubMed ID: 23942362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Different blood flow responses to dynamic exercise between internal carotid and vertebral arteries in women.
    Sato K; Sadamoto T
    J Appl Physiol (1985); 2010 Sep; 109(3):864-9. PubMed ID: 20595539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cerebrovascular response to the cold pressor test - the critical role of carbon dioxide.
    Tymko MM; Kerstens TP; Wildfong KW; Ainslie PN
    Exp Physiol; 2017 Dec; 102(12):1647-1660. PubMed ID: 28925529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of healthy aging on cerebral blood flow, CO
    Nowak-Flück D; Ainslie PN; Bain AR; Ahmed A; Wildfong KW; Morris LE; Phillips AA; Fisher JP
    J Appl Physiol (1985); 2018 Dec; 125(6):1917-1930. PubMed ID: 29878868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of increases in cardiac contractility on cerebral blood flow in humans.
    Ogoh S; Moralez G; Washio T; Sarma S; Hieda M; Romero SA; Cramer MN; Shibasaki M; Crandall CG
    Am J Physiol Heart Circ Physiol; 2017 Dec; 313(6):H1155-H1161. PubMed ID: 28916637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of acute hypoxia on blood flow in vertebral and internal carotid arteries.
    Ogoh S; Sato K; Nakahara H; Okazaki K; Subudhi AW; Miyamoto T
    Exp Physiol; 2013 Mar; 98(3):692-8. PubMed ID: 23143991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arterial and venous cerebral blood flow responses to long-term head-down bed rest in male volunteers.
    Ogoh S; Sato K; de Abreu S; Denise P; Normand H
    Exp Physiol; 2020 Jan; 105(1):44-52. PubMed ID: 31691384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cerebral blood flow measurements of the extracranial carotid and vertebral arteries with Doppler ultrasonography in healthy adults.
    Yazici B; Erdoğmuş B; Tugay A
    Diagn Interv Radiol; 2005 Dec; 11(4):195-8. PubMed ID: 16320223
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential vasomotor responses to isocapnic hyperoxia: cerebral versus peripheral circulation.
    Mattos JD; Campos MO; Rocha MP; Mansur DE; Rocha HNM; Garcia VP; Rocha NG; Alvares TS; Secher NH; Nóbrega ACL; Fernandes IA
    Am J Physiol Regul Integr Comp Physiol; 2020 Jan; 318(1):R182-R187. PubMed ID: 31644318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of muscle metaboreflex on the distribution of blood flow in cerebral arteries during isometric exercise.
    Ogoh S; Sato K; Hirasawa A; Sadamoto T
    J Physiol Sci; 2019 Mar; 69(2):375-385. PubMed ID: 30604287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.