BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 26846582)

  • 1. Chemoselective and stereoselective lithium carbenoid mediated cyclopropanation of acyclic allylic alcohols.
    Durán-Peña MJ; Flores-Giubi ME; Botubol-Ares JM; Harwood LM; Collado IG; Macías-Sánchez AJ; Hernández-Galán R
    Org Biomol Chem; 2016 Mar; 14(9):2731-41. PubMed ID: 26846582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titanium carbenoid-mediated cyclopropanation of allylic alcohols: selectivity and mechanism.
    Durán-Peña MJ; Botubol-Ares JM; Hanson JR; Hernández-Galán R; Collado IG
    Org Biomol Chem; 2015 Jun; 13(22):6325-32. PubMed ID: 25968250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the mechanism and stereochemistry of chiral lithium-carbenoid-promoted cyclopropanation reactions.
    Ke Z; Zhou Y; Gao H; Zhao C; Phillips DL
    Chemistry; 2007; 13(23):6724-31. PubMed ID: 17508383
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diastereoselective zinco-cyclopropanation of chiral allylic alcohols with gem-dizinc carbenoids.
    Fournier JF; Mathieu S; Charette AB
    J Am Chem Soc; 2005 Sep; 127(38):13140-1. PubMed ID: 16173730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Highly enantioselective Simmons-Smith fluorocyclopropanation of allylic alcohols via the halogen scrambling strategy of zinc carbenoids.
    Beaulieu LP; Schneider JF; Charette AB
    J Am Chem Soc; 2013 May; 135(21):7819-22. PubMed ID: 23659635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient approaches to the stereoselective synthesis of cyclopropyl alcohols.
    Kim HY; Walsh PJ
    Acc Chem Res; 2012 Sep; 45(9):1533-47. PubMed ID: 22725974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photochemical Intermolecular Cyclopropanation Reactions of Allylic Alcohols for the Synthesis of [3.1.0]-Bicyclohexanes.
    Pei C; Empel C; Koenigs RM
    Org Lett; 2023 Jan; 25(1):169-173. PubMed ID: 36602193
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diastereoselective cyclopropanation of ketone enols with Fischer carbene complexes.
    Barluenga J; Suero MG; Pérez-Sanchez I; Flórez J
    J Am Chem Soc; 2008 Mar; 130(9):2708-9. PubMed ID: 18257560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rh(III)-Catalyzed C-H Activation-Initiated Directed Cyclopropanation of Allylic Alcohols.
    Phipps EJT; Rovis T
    J Am Chem Soc; 2019 May; 141(17):6807-6811. PubMed ID: 30998324
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium carbenoids-ultra-reactive yet selective reagents for methylenation and halomethylenation of sulfones.
    Pearlman BA; Putt SR; Fleming JA
    J Org Chem; 2006 Jul; 71(15):5646-57. PubMed ID: 16839145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enantio- and diastereoselective iodocyclopropanation of allylic alcohols by using a substituted zinc carbenoid.
    Beaulieu LP; Zimmer LE; Charette AB
    Chemistry; 2009 Nov; 15(44):11829-32. PubMed ID: 19806622
    [No Abstract]   [Full Text] [Related]  

  • 12. Enantioselective synthesis of 1,2,3-trisubstituted cyclopropanes using gem-dizinc reagents.
    Zimmer LE; Charette AB
    J Am Chem Soc; 2009 Nov; 131(43):15624-6. PubMed ID: 19813709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boron-substituted difluorocyclopropanes: new building blocks of gem-difluorocyclopropanes.
    Fujioka Y; Amii H
    Org Lett; 2008 Mar; 10(5):769-72. PubMed ID: 18225908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly Diastereo- and Enantioselective Synthesis of Nitrile-Substituted Cyclopropanes by Myoglobin-Mediated Carbene Transfer Catalysis.
    Chandgude AL; Fasan R
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15852-15856. PubMed ID: 30300955
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of enolate-homoenolate species as (Z)-gamma-siloxyallylmetal equivalents: sequential 1,4-addition of bis(iodozincio)methane to 1,4-dicarbonylbutenes and cyclopropanation.
    Hirayama T; Oshima K; Matsubara S
    Angew Chem Int Ed Engl; 2005 May; 44(21):3293-6. PubMed ID: 15844119
    [No Abstract]   [Full Text] [Related]  

  • 16. The regio- and stereospecific intermolecular dehydrative alkoxylation of allylic alcohols catalyzed by a gold(I) N-heterocyclic carbene complex.
    Mukherjee P; Widenhoefer RA
    Chemistry; 2013 Mar; 19(10):3437-44. PubMed ID: 23348826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of donor-acceptor alkynylcyclopropanes by diastereoselective cyclopropanation of electron-deficient alkenes with alkoxyalkynyl Fischer carbene complexes.
    Barluenga J; Fernández-Rodríguez MA; García-García P; Aguilar E; Merino I
    Chemistry; 2005 Dec; 12(1):303-13. PubMed ID: 16294347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lithium amidoborane, a highly chemoselective reagent for the reduction of α,β-unsaturated ketones to allylic alcohols.
    Xu W; Zhou Y; Wang R; Wu G; Chen P
    Org Biomol Chem; 2012 Jan; 10(2):367-71. PubMed ID: 22080388
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Balance between allylic C-H activation and cyclopropanation in the reactions of donor/acceptor-substituted rhodium carbenoids with trans-alkenes.
    Davies HM; Coleman MG; Ventura DL
    Org Lett; 2007 Nov; 9(24):4971-4. PubMed ID: 17956111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly enantioselective synthesis of 1,2,3-substituted cyclopropanes by using α-Iodo- and α-chloromethylzinc carbenoids.
    Beaulieu LP; Zimmer LE; Gagnon A; Charette AB
    Chemistry; 2012 Nov; 18(46):14784-91. PubMed ID: 23012181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.