These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 26846587)

  • 1. New Flexible Channels for Room Temperature Tunneling Field Effect Transistors.
    Hao B; Asthana A; Hazaveh PK; Bergstrom PL; Banyai D; Savaikar MA; Jaszczak JA; Yap YK
    Sci Rep; 2016 Feb; 6():20293. PubMed ID: 26846587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Room-temperature tunneling behavior of boron nitride nanotubes functionalized with gold quantum dots.
    Lee CH; Qin S; Savaikar MA; Wang J; Hao B; Zhang D; Banyai D; Jaszczak JA; Clark KW; Idrobo JC; Li AP; Yap YK
    Adv Mater; 2013 Sep; 25(33):4544-8. PubMed ID: 23775671
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Silicon nanowire-based tunneling field-effect transistors on flexible plastic substrates.
    Lee M; Koo J; Chung EA; Jeong DY; Koo YS; Kim S
    Nanotechnology; 2009 Nov; 20(45):455201. PubMed ID: 19822935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging Applications of Boron Nitride Nanotubes in Energy Harvesting, Electronics, and Biomedicine.
    Zhang D; Zhang S; Yapici N; Oakley R; Sharma S; Parashar V; Yap YK
    ACS Omega; 2021 Aug; 6(32):20722-20728. PubMed ID: 34423180
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switching Behaviors of Graphene-Boron Nitride Nanotube Heterojunctions.
    Parashar V; Durand CP; Hao B; Amorim RG; Pandey R; Tiwari B; Zhang D; Liu Y; Li AP; Yap YK
    Sci Rep; 2015 Jul; 5():12238. PubMed ID: 26192733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel antimonene tunneling field-effect transistors using an abrupt transition from semiconductor to metal in monolayer and multilayer antimonene heterostructures.
    Chang J
    Nanoscale; 2018 Jul; 10(28):13652-13660. PubMed ID: 29985510
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary Black Phosphorus Tunneling Field-Effect Transistors.
    Wu P; Ameen T; Zhang H; Bendersky LA; Ilatikhameneh H; Klimeck G; Rahman R; Davydov AV; Appenzeller J
    ACS Nano; 2019 Jan; 13(1):377-385. PubMed ID: 30563322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demonstration of hetero-gate-dielectric tunneling field-effect transistors (HG TFETs).
    Choi WY; Lee HK
    Nano Converg; 2016; 3(1):13. PubMed ID: 28191423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Young modulus, mechanical and electrical properties of isolated individual and bundled single-walled boron nitride nanotubes.
    Arenal R; Wang MS; Xu Z; Loiseau A; Golberg D
    Nanotechnology; 2011 Jul; 22(26):265704. PubMed ID: 21576807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrical Characteristics of Ge/Si-Based Source Pocket Tunnel Field-Effect Transistors.
    Ahn TJ; Yu YS
    J Nanosci Nanotechnol; 2018 Sep; 18(9):5887-5892. PubMed ID: 29677711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field emission and strain engineering of electronic properties in boron nitride nanotubes.
    Ghassemi HM; Lee CH; Yap YK; Yassar RS
    Nanotechnology; 2012 Mar; 23(10):105702. PubMed ID: 22349128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of Number Fluctuation and Position Variation of Channel Dopants and Gate Metal Grains on Tunneling Field-Effect Transistors (TFETs).
    Choi KM; Kim SK; Choi WY
    J Nanosci Nanotechnol; 2016 May; 16(5):5255-8. PubMed ID: 27483910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancement of tunneling current in phosphorene tunnel field effect transistors by surface defects.
    Lu J; Fan ZQ; Gong J; Chen JZ; ManduLa H; Zhang YY; Yang SY; Jiang XW
    Phys Chem Chem Phys; 2018 Feb; 20(8):5699-5707. PubMed ID: 29410993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probing charge transport at the single-molecule level on silicon by using cryogenic ultra-high vacuum scanning tunneling microscopy.
    Guisinger NP; Yoder NL; Hersam MC
    Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8838-43. PubMed ID: 15956214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Note: Development of a wideband amplifier for cryogenic scanning tunneling microscopy.
    Zhang C; Jeon H; Oh M; Lee M; Kim S; Yi S; Lee H; Zoh I; Yoo Y; Kuk Y
    Rev Sci Instrum; 2017 Jun; 88(6):066109. PubMed ID: 28667959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impact of edge states on device performance of phosphorene heterojunction tunneling field effect transistors.
    Liu F; Wang J; Guo H
    Nanoscale; 2016 Oct; 8(42):18180-18186. PubMed ID: 27747341
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Charge Tunneling in Codoped Silicon Nanodevices.
    Moraru D; Kaneko T; Tamura Y; Jupalli TT; Singh RS; Pandy C; Popa L; Iacomi F
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Axial SiGe heteronanowire tunneling field-effect transistors.
    Le ST; Jannaty P; Luo X; Zaslavsky A; Perea DE; Dayeh SA; Picraux ST
    Nano Lett; 2012 Nov; 12(11):5850-5. PubMed ID: 23113718
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ TEM-STM recorded kinetics of boron nitride nanotube failure under current flow.
    Xu Z; Golberg D; Bando Y
    Nano Lett; 2009 Jun; 9(6):2251-4. PubMed ID: 19413292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel fabrication method for the nanoscale tunneling field effect transistor.
    Kim HW; Kim JH; Kim SW; Sun MC; Kim G; Park E; Kim H; Kim KW; Park BG
    J Nanosci Nanotechnol; 2012 Jul; 12(7):5592-7. PubMed ID: 22966616
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.