These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

301 related articles for article (PubMed ID: 26846670)

  • 1. Transcriptome-enabled discovery and functional characterization of enzymes related to (2S)-pinocembrin biosynthesis from Ornithogalum caudatum and their application for metabolic engineering.
    Guo L; Chen X; Li LN; Tang W; Pan YT; Kong JQ
    Microb Cell Fact; 2016 Feb; 15():27. PubMed ID: 26846670
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptome-guided gene isolation and functional characterization of UDP-xylose synthase and UDP-D-apiose/UDP-D-xylose synthase families from Ornithogalum caudatum Ait.
    Yin S; Kong JQ
    Plant Cell Rep; 2016 Nov; 35(11):2403-2421. PubMed ID: 27591771
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient production of (2S)-flavanones by Escherichia coli containing an artificial biosynthetic gene cluster.
    Miyahisa I; Kaneko M; Funa N; Kawasaki H; Kojima H; Ohnishi Y; Horinouchi S
    Appl Microbiol Biotechnol; 2005 Sep; 68(4):498-504. PubMed ID: 15770480
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of pinocembrin from glucose using engineered escherichia coli.
    Kim BG; Lee H; Ahn JH
    J Microbiol Biotechnol; 2014 Nov; 24(11):1536-41. PubMed ID: 25085569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved pinocembrin production in Escherichia coli by engineering fatty acid synthesis.
    Cao W; Ma W; Zhang B; Wang X; Chen K; Li Y; Ouyang P
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):557-66. PubMed ID: 26733394
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy.
    Wu J; Du G; Zhou J; Chen J
    Metab Eng; 2013 Mar; 16():48-55. PubMed ID: 23246524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stepwise modular pathway engineering of Escherichia coli for efficient one-step production of (2S)-pinocembrin.
    Wu J; Zhang X; Dong M; Zhou J
    J Biotechnol; 2016 Aug; 231():183-192. PubMed ID: 27297547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cDNA isolation and functional characterization of squalene synthase gene from Ornithogalum caudatum.
    Liu M; Li LN; Pan YT; Kong JQ
    Protein Expr Purif; 2017 Feb; 130():63-72. PubMed ID: 27725246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Step-by-step optimization of a heterologous pathway for de novo naringenin production in Escherichia coli.
    Gomes D; Rodrigues JL; Rodrigues LR
    Appl Microbiol Biotechnol; 2024 Aug; 108(1):435. PubMed ID: 39126431
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heterologous production of flavanones in Escherichia coli: potential for combinatorial biosynthesis of flavonoids in bacteria.
    Kaneko M; Hwang EI; Ohnishi Y; Horinouchi S
    J Ind Microbiol Biotechnol; 2003 Aug; 30(8):456-61. PubMed ID: 12759810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of plant-specific phenylpropanoids biosynthesis in Streptomyces venezuelae.
    Park SR; Yoon JA; Paik JH; Park JW; Jung WS; Ban YH; Kim EJ; Yoo YJ; Han AR; Yoon YJ
    J Biotechnol; 2009 May; 141(3-4):181-8. PubMed ID: 19433224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of two flavonol synthases with iron-independent flavanone 3-hydroxylase activity from Ornithogalum caudatum Jacq.
    Sun YJ; He JM; Kong JQ
    BMC Plant Biol; 2019 May; 19(1):195. PubMed ID: 31088366
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Production of plant-specific flavones baicalein and scutellarein in an engineered E. coli from available phenylalanine and tyrosine.
    Li J; Tian C; Xia Y; Mutanda I; Wang K; Wang Y
    Metab Eng; 2019 Mar; 52():124-133. PubMed ID: 30496827
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced pinocembrin production in Escherichia coli by regulating cinnamic acid metabolism.
    Cao W; Ma W; Wang X; Zhang B; Cao X; Chen K; Li Y; Ouyang P
    Sci Rep; 2016 Sep; 6():32640. PubMed ID: 27586788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient biosynthesis of (2S)-pinocembrin from d-glucose by integrating engineering central metabolic pathways with a pH-shift control strategy.
    Wu J; Zhang X; Zhou J; Dong M
    Bioresour Technol; 2016 Oct; 218():999-1007. PubMed ID: 27450982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Construction of a Corynebacterium glutamicum platform strain for the production of stilbenes and (2S)-flavanones.
    Kallscheuer N; Vogt M; Stenzel A; Gätgens J; Bott M; Marienhagen J
    Metab Eng; 2016 Nov; 38():47-55. PubMed ID: 27288926
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Production of plant-specific flavanones by Escherichia coli containing an artificial gene cluster.
    Hwang EI; Kaneko M; Ohnishi Y; Horinouchi S
    Appl Environ Microbiol; 2003 May; 69(5):2699-706. PubMed ID: 12732539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of ATP levels in Escherichia coli using CRISPR interference for enhanced pinocembrin production.
    Tao S; Qian Y; Wang X; Cao W; Ma W; Chen K; Ouyang P
    Microb Cell Fact; 2018 Sep; 17(1):147. PubMed ID: 30227873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli.
    Wu J; Zhou T; Du G; Zhou J; Chen J
    PLoS One; 2014; 9(7):e101492. PubMed ID: 24988485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of Chalcone Synthase Activity and High-Efficiency Fermentative Production of (2
    Tong Y; Li N; Zhou S; Zhang L; Xu S; Zhou J
    ACS Synth Biol; 2024 May; 13(5):1454-1466. PubMed ID: 38662928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.