These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 26846800)

  • 1. Microfluidic Device to Quantify the Behavior of Therapeutic Bacteria in Three-Dimensional Tumor Tissue.
    Brackett EL; Swofford CA; Forbes NS
    Methods Mol Biol; 2016; 1409():35-48. PubMed ID: 26846800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and Operation of Microfluidic Hanging-Drop Networks.
    Misun PM; Birchler AK; Lang M; Hierlemann A; Frey O
    Methods Mol Biol; 2018; 1771():183-202. PubMed ID: 29633214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assembly and Use of a Microfluidic Device to Study Cell Migration in Confined Environments.
    Keys J; Windsor A; Lammerding J
    Methods Mol Biol; 2018; 1840():101-118. PubMed ID: 30141042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Digital microfluidics for automated hanging drop cell spheroid culture.
    Aijian AP; Garrell RL
    J Lab Autom; 2015 Jun; 20(3):283-95. PubMed ID: 25510471
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detachably assembled microfluidic device for perfusion culture and post-culture analysis of a spheroid array.
    Sakai Y; Hattori K; Yanagawa F; Sugiura S; Kanamori T; Nakazawa K
    Biotechnol J; 2014 Jul; 9(7):971-9. PubMed ID: 24802801
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-printed microfluidic devices.
    Amin R; Knowlton S; Hart A; Yenilmez B; Ghaderinezhad F; Katebifar S; Messina M; Khademhosseini A; Tasoglu S
    Biofabrication; 2016 Jun; 8(2):022001. PubMed ID: 27321137
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Microfluidic Platform for Long-Term Monitoring of Algae in a Dynamic Environment.
    Luke CS; Selimkhanov J; Baumgart L; Cohen SE; Golden SS; Cookson NA; Hasty J
    ACS Synth Biol; 2016 Jan; 5(1):8-14. PubMed ID: 26332284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 96-well format-based microfluidic platform for parallel interconnection of multiple multicellular spheroids.
    Kim JY; Fluri DA; Kelm JM; Hierlemann A; Frey O
    J Lab Autom; 2015 Jun; 20(3):274-82. PubMed ID: 25524491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a Microfluidic Cell Culture Device Using Photolithographic and Soft Lithographic Techniques.
    Christoffersson J; Mandenius CF
    Methods Mol Biol; 2019; 1994():227-233. PubMed ID: 31124120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A microfluidic gradient device for drug screening with human iPSC-derived motoneurons.
    Mo SJ; Lee JH; Kye HG; Lee JM; Kim EJ; Geum D; Sun W; Chung BG
    Analyst; 2020 Apr; 145(8):3081-3089. PubMed ID: 32150196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrotaxis Studies of Lung Cancer Cells using a Multichannel Dual-electric-field Microfluidic Chip.
    Hou HS; Chang HF; Cheng JY
    J Vis Exp; 2015 Dec; (106):e53340. PubMed ID: 26780080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidics as a new tool in radiation biology.
    Lacombe J; Phillips SL; Zenhausern F
    Cancer Lett; 2016 Feb; 371(2):292-300. PubMed ID: 26704304
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable organization and high throughput production of recoverable 3D tumors using pneumatic microfluidics.
    Liu W; Wang JC; Wang J
    Lab Chip; 2015 Feb; 15(4):1195-204. PubMed ID: 25571856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A versatile microfluidic tool for the 3D culture of HepaRG cells seeded at various stages of differentiation.
    Boul M; Benzoubir N; Messina A; Ghasemi R; Mosbah IB; Duclos-Vallée JC; Dubart-Kupperschmitt A; Le Pioufle B
    Sci Rep; 2021 Jul; 11(1):14075. PubMed ID: 34234159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multiscale variation-aware techniques for high-performance digital microfluidic lab-on-a-chip component placement.
    Liao C; Hu S
    IEEE Trans Nanobioscience; 2011 Mar; 10(1):51-8. PubMed ID: 21511570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viable cell culture in PDMS-based microfluidic devices.
    Tanyeri M; Tay S
    Methods Cell Biol; 2018; 148():3-33. PubMed ID: 30473072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-chip bioassay using immobilized sensing bacteria in three-dimensional microfluidic network.
    Tani H; Maehana K; Kamidate T
    Methods Mol Biol; 2007; 385():37-52. PubMed ID: 18365703
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study of Chemotaxis and Cell-Cell Interactions in Cancer with Microfluidic Devices.
    Sai J; Rogers M; Hockemeyer K; Wikswo JP; Richmond A
    Methods Enzymol; 2016; 570():19-45. PubMed ID: 26921940
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfluidic technologies for anticancer drug studies.
    Valente KP; Khetani S; Kolahchi AR; Sanati-Nezhad A; Suleman A; Akbari M
    Drug Discov Today; 2017 Nov; 22(11):1654-1670. PubMed ID: 28684326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.