BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26846813)

  • 1. Accurate refinement of docked protein complexes using evolutionary information and deep learning.
    Akbal-Delibas B; Farhoodi R; Pomplun M; Haspel N
    J Bioinform Comput Biol; 2016 Jun; 14(3):1642002. PubMed ID: 26846813
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Approaches for Predicting Protein Complex Similarity.
    Farhoodi R; Akbal-Delibas B; Haspel N
    J Comput Biol; 2017 Jan; 24(1):40-51. PubMed ID: 27748625
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accurate Prediction of Docked Protein Structure Similarity.
    Akbal-Delibas B; Pomplun M; Haspel N
    J Comput Biol; 2015 Sep; 22(9):892-904. PubMed ID: 26335807
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evolutionary conservation-based method for refining and reranking protein complex structures.
    Akbal-Delibas B; Hashmi I; Shehu A; Haspel N
    J Bioinform Comput Biol; 2012 Jun; 10(3):1242002. PubMed ID: 22809378
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DeepBSP-a Machine Learning Method for Accurate Prediction of Protein-Ligand Docking Structures.
    Bao J; He X; Zhang JZH
    J Chem Inf Model; 2021 May; 61(5):2231-2240. PubMed ID: 33979150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy-based graph convolutional networks for scoring protein docking models.
    Cao Y; Shen Y
    Proteins; 2020 Aug; 88(8):1091-1099. PubMed ID: 32144844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development and evaluation of a generic evolutionary method for protein-ligand docking.
    Yang JM
    J Comput Chem; 2004 Apr; 25(6):843-57. PubMed ID: 15011256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid refinement of protein interfaces incorporating solvation: application to the docking problem.
    Jackson RM; Gabb HA; Sternberg MJ
    J Mol Biol; 1998 Feb; 276(1):265-85. PubMed ID: 9514726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Benchmarking of different molecular docking methods for protein-peptide docking.
    Agrawal P; Singh H; Srivastava HK; Singh S; Kishore G; Raghava GPS
    BMC Bioinformatics; 2019 Feb; 19(Suppl 13):426. PubMed ID: 30717654
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of binding entropy in the refinement of protein-ligand docking predictions: analysis based on the use of 11 scoring functions.
    Ruvinsky AM
    J Comput Chem; 2007 Jun; 28(8):1364-72. PubMed ID: 17342720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein docking using surface matching and supervised machine learning.
    Bordner AJ; Gorin AA
    Proteins; 2007 Aug; 68(2):488-502. PubMed ID: 17444516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving ranking of models for protein complexes with side chain modeling and atomic potentials.
    Viswanath S; Ravikant DV; Elber R
    Proteins; 2013 Apr; 81(4):592-606. PubMed ID: 23180599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Benchmarking of structure refinement methods for protein complex models.
    Verburgt J; Kihara D
    Proteins; 2022 Jan; 90(1):83-95. PubMed ID: 34309909
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting protein complex geometries with a neural network.
    Chae MH; Krull F; Lorenzen S; Knapp EW
    Proteins; 2010 Mar; 78(4):1026-39. PubMed ID: 19938153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Target-specific native/decoy pose classifier improves the accuracy of ligand ranking in the CSAR 2013 benchmark.
    Fourches D; Politi R; Tropsha A
    J Chem Inf Model; 2015 Jan; 55(1):63-71. PubMed ID: 25521713
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein-protein docking with multiple residue conformations and residue substitutions.
    Lorber DM; Udo MK; Shoichet BK
    Protein Sci; 2002 Jun; 11(6):1393-408. PubMed ID: 12021438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine-learning scoring functions for identifying native poses of ligands docked to known and novel proteins.
    Ashtawy HM; Mahapatra NR
    BMC Bioinformatics; 2015; 16 Suppl 6(Suppl 6):S3. PubMed ID: 25916860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A machine learning approach for ranking clusters of docked protein-protein complexes by pairwise cluster comparison.
    Pfeiffenberger E; Chaleil RA; Moal IH; Bates PA
    Proteins; 2017 Mar; 85(3):528-543. PubMed ID: 27935158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal design of protein docking potentials: efficiency and limitations.
    Tobi D; Bahar I
    Proteins; 2006 Mar; 62(4):970-81. PubMed ID: 16385562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.