These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26846830)

  • 1. The emerging role of myeloid-derived suppressor cells in lung diseases.
    Kolahian S; Öz HH; Zhou B; Griessinger CM; Rieber N; Hartl D
    Eur Respir J; 2016 Mar; 47(3):967-77. PubMed ID: 26846830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expansion of myeloid-derived suppressor cells in chronic obstructive pulmonary disease and lung cancer: potential link between inflammation and cancer.
    Scrimini S; Pons J; Agustí A; Clemente A; Sallán MC; Bauçà JM; Soriano JB; Cosio BG; Lopez M; Crespi C; Sauleda J
    Cancer Immunol Immunother; 2015 Oct; 64(10):1261-70. PubMed ID: 26122358
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased frequency of myeloid-derived suppressor cells during active tuberculosis and after recent mycobacterium tuberculosis infection suppresses T-cell function.
    du Plessis N; Loebenberg L; Kriel M; von Groote-Bidlingmaier F; Ribechini E; Loxton AG; van Helden PD; Lutz MB; Walzl G
    Am J Respir Crit Care Med; 2013 Sep; 188(6):724-32. PubMed ID: 23885784
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dendritic Cells in Human Lung Disease: Recent Advances.
    Upham JW; Xi Y
    Chest; 2017 Mar; 151(3):668-673. PubMed ID: 27729261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Damage-Associated Molecular Patterns and Myeloid-Derived Suppressor Cells in Bronchoalveolar Lavage Fluid in Chronic Obstructive Pulmonary Disease Patients.
    Brajer-Luftmann B; Nowicka A; Kaczmarek M; Wyrzykiewicz M; Yasar S; Piorunek T; Sikora J; Batura-Gabryel H
    J Immunol Res; 2019; 2019():9708769. PubMed ID: 31355298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunosuppressive Role of Myeloid-Derived Suppressor Cells and Therapeutic Targeting in Lung Cancer.
    Ma J; Xu H; Wang S
    J Immunol Res; 2018; 2018():6319649. PubMed ID: 29765990
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in the study of myeloid-derived suppressor cells in infectious lung diseases.
    Zhang MN; Yuan YL; Ao SH
    Front Immunol; 2023; 14():1125737. PubMed ID: 37063919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Myeloid-Derived Suppressor Cells in Cancers and Inflammatory Diseases: Angel or Demon?
    Su Z; Ni P; Zhou C; Wang J
    Scand J Immunol; 2016 Nov; 84(5):255-261. PubMed ID: 27541573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Myeloid-Derived Suppressor Cells in Sepsis.
    Schrijver IT; Théroude C; Roger T
    Front Immunol; 2019; 10():327. PubMed ID: 30873175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloid-Derived Suppressor Cells as a Potential Biomarker and Therapeutic Target in COVID-19.
    Rowlands M; Segal F; Hartl D
    Front Immunol; 2021; 12():697405. PubMed ID: 34220859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Curdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burden.
    Rui K; Tian J; Tang X; Ma J; Xu P; Tian X; Wang Y; Xu H; Lu L; Wang S
    Immunol Res; 2016 Aug; 64(4):931-9. PubMed ID: 26832917
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pulmonary macrophages: key players in the innate defence of the airways.
    Byrne AJ; Mathie SA; Gregory LG; Lloyd CM
    Thorax; 2015 Dec; 70(12):1189-96. PubMed ID: 26286722
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myeloid-Derived Suppressor Cells in Bacterial Infections.
    Ost M; Singh A; Peschel A; Mehling R; Rieber N; Hartl D
    Front Cell Infect Microbiol; 2016; 6():37. PubMed ID: 27066459
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced circulating ILC2s accompany by upregulated MDSCs in patients with asthma.
    Wu Y; Yan Y; Su Z; Bie Q; Wu J; Wang S; Yu Y; Ding H; Lu P; Xu H
    Int J Clin Exp Pathol; 2015; 8(4):3568-79. PubMed ID: 26097539
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Emerging Role of Myeloid-Derived Suppressor Cells in Tuberculosis.
    Magcwebeba T; Dorhoi A; du Plessis N
    Front Immunol; 2019; 10():917. PubMed ID: 31114578
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myeloid-derived suppressor cells as intruders and targets: clinical implications in cancer therapy.
    Baniyash M
    Cancer Immunol Immunother; 2016 Jul; 65(7):857-67. PubMed ID: 27225641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The innate immune function of airway epithelial cells in inflammatory lung disease.
    Hiemstra PS; McCray PB; Bals R
    Eur Respir J; 2015 Apr; 45(4):1150-62. PubMed ID: 25700381
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of helper-dependent adenoviral vectors in modulating airway innate immunity.
    Kushwah R; Cao H; Hu J
    Cell Mol Immunol; 2007 Apr; 4(2):81-9. PubMed ID: 17484801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of macrophages in obstructive airways disease: chronic obstructive pulmonary disease and asthma.
    Pappas K; Papaioannou AI; Kostikas K; Tzanakis N
    Cytokine; 2013 Dec; 64(3):613-25. PubMed ID: 24084332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A common approach for fighting tuberculosis and leprosy: controlling endoplasmic reticulum stress in myeloid-derived suppressor cells.
    Kumar N; Khan N; Cleveland D; Geiger JD
    Immunotherapy; 2021 Dec; 13(18):1555-1563. PubMed ID: 34743608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.