These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 26847172)

  • 1. Acid Treatment Enables Suppression of Electron-Hole Recombination in Hematite for Photoelectrochemical Water Splitting.
    Yang Y; Forster M; Ling Y; Wang G; Zhai T; Tong Y; Cowan AJ; Li Y
    Angew Chem Int Ed Engl; 2016 Mar; 55(10):3403-7. PubMed ID: 26847172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Back electron-hole recombination in hematite photoanodes for water splitting.
    Le Formal F; Pendlebury SR; Cornuz M; Tilley SD; Grätzel M; Durrant JR
    J Am Chem Soc; 2014 Feb; 136(6):2564-74. PubMed ID: 24437340
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Facile Surface Passivation of Hematite Photoanodes with TiO2 Overlayers for Efficient Solar Water Splitting.
    Ahmed MG; Kretschmer IE; Kandiel TA; Ahmed AY; Rashwan FA; Bahnemann DW
    ACS Appl Mater Interfaces; 2015 Nov; 7(43):24053-62. PubMed ID: 26488924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing the Role of TiO2 Surface Treatment of Hematite Nanorods Photoanodes for Solar Water Splitting.
    Li X; Bassi PS; Boix PP; Fang Y; Wong LH
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16960-6. PubMed ID: 26192330
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved charge separation efficiency of hematite photoanodes by coating an ultrathin p-type LaFeO
    Fang T; Guo Y; Cai S; Zhang N; Hu Y; Zhang S; Li Z; Zou Z
    Nanotechnology; 2017 Sep; 28(39):394003. PubMed ID: 28879862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the dynamics of photogenerated holes in doped hematite photoanodes for solar water splitting using transient absorption spectroscopy.
    Pei GX; Wijten JHJ; Weckhuysen BM
    Phys Chem Chem Phys; 2018 Apr; 20(15):9806-9811. PubMed ID: 29620131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Passivation of hematite nanorod photoanodes with a phosphorus overlayer for enhanced photoelectrochemical water oxidation.
    Xiong D; Li W; Wang X; Liu L
    Nanotechnology; 2016 Sep; 27(37):375401. PubMed ID: 27486842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrathin planar hematite film for solar photoelectrochemical water splitting.
    Liu D; Bierman DM; Lenert A; Yu HT; Yang Z; Wang EN; Duan YY
    Opt Express; 2015 Nov; 23(24):A1491-8. PubMed ID: 26698797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. N and Sn Co-Doped hematite photoanodes for efficient solar water oxidation.
    Jiao T; Lu C; Feng K; Deng J; Long D; Zhong J
    J Colloid Interface Sci; 2021 Mar; 585():660-667. PubMed ID: 33127051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Modification of Hematite Photoanodes with CeO
    Ahmed MG; Zhang M; Tay YF; Chiam SY; Wong LH
    ChemSusChem; 2020 Oct; 13(20):5489-5496. PubMed ID: 32776429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pivotal Role and Regulation of Proton Transfer in Water Oxidation on Hematite Photoanodes.
    Zhang Y; Zhang H; Ji H; Ma W; Chen C; Zhao J
    J Am Chem Soc; 2016 Mar; 138(8):2705-11. PubMed ID: 26859244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Core-shell hematite nanorods: a simple method to improve the charge transfer in the photoanode for photoelectrochemical water splitting.
    Gurudayal ; Chee PM; Boix PP; Ge H; Yanan F; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6852-9. PubMed ID: 25790720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Role of Substrate Tin Diffusion on Hematite Based Photoelectrochemical Water Splitting System.
    Natarajan K; Bhatt P; Yadav P; Pandey K; Tripathi B; Kumar M
    J Nanosci Nanotechnol; 2018 Mar; 18(3):1856-1863. PubMed ID: 29448672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of Ultrathin Films of Hematite for Photoelectrochemical Water Splitting via H2 Treatment.
    Moir J; Soheilnia N; Liao K; O'Brien P; Tian Y; Burch KS; Ozin GA
    ChemSusChem; 2015 May; 8(9):1557-67. PubMed ID: 25650837
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the efficiency of hematite nanorods for photoelectrochemical water splitting by doping with manganese.
    Gurudayal ; Chiam SY; Kumar MH; Bassi PS; Seng HL; Barber J; Wong LH
    ACS Appl Mater Interfaces; 2014 Apr; 6(8):5852-9. PubMed ID: 24702963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tin doping speeds up hole transfer during light-driven water oxidation at hematite photoanodes.
    Dunn HK; Feckl JM; Müller A; Fattakhova-Rohlfing D; Morehead SG; Roos J; Peter LM; Scheu C; Bein T
    Phys Chem Chem Phys; 2014 Nov; 16(44):24610-20. PubMed ID: 25310963
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface passivation of undoped hematite nanorod arrays via aqueous solution growth for improved photoelectrochemical water splitting.
    Shen S; Li M; Guo L; Jiang J; Mao SS
    J Colloid Interface Sci; 2014 Aug; 427():20-4. PubMed ID: 24290228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequentially surface modified hematite enables lower applied bias photoelectrochemical water splitting.
    Tamirat AG; Dubale AA; Su WN; Chen HM; Hwang BJ
    Phys Chem Chem Phys; 2017 Aug; 19(31):20881-20890. PubMed ID: 28745359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing Hematite Photoanode Activity for Water Oxidation by Incorporation of Reduced Graphene Oxide.
    do Amaral Carminati S; Souza FL; Nogueira AF
    Chemphyschem; 2016 Jan; 17(1):170-7. PubMed ID: 26561385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gradient FeO(x)(PO4)(y) layer on hematite photoanodes: novel structure for efficient light-driven water oxidation.
    Zhang Y; Zhou Z; Chen C; Che Y; Ji H; Ma W; Zhang J; Song D; Zhao J
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12844-51. PubMed ID: 25068504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.