These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 26847201)
1. Pressure adaptation of 3-isopropylmalate dehydrogenase from an extremely piezophilic bacterium is attributed to a single amino acid substitution. Hamajima Y; Nagae T; Watanabe N; Ohmae E; Kato-Yamada Y; Kato C Extremophiles; 2016 Mar; 20(2):177-86. PubMed ID: 26847201 [TBL] [Abstract][Full Text] [Related]
2. Similar structural stabilities of 3-isopropylmalate dehydrogenases from the obligatory piezophilic bacterium Shewanella benthica strain DB21MT-2 and its atmospheric congener S. oneidensis strain MR-1. Ohmae E; Hamajima Y; Nagae T; Watanabe N; Kato C Biochim Biophys Acta Proteins Proteom; 2018; 1866(5-6):680-691. PubMed ID: 29630970 [TBL] [Abstract][Full Text] [Related]
3. Structural analysis of 3-isopropylmalate dehydrogenase from the obligate piezophile Shewanella benthica DB21MT-2 and the nonpiezophile Shewanella oneidensis MR-1. Nagae T; Kato C; Watanabe N Acta Crystallogr Sect F Struct Biol Cryst Commun; 2012 Mar; 68(Pt 3):265-8. PubMed ID: 22442218 [TBL] [Abstract][Full Text] [Related]
4. Pressure effects on the chimeric 3-isopropylmalate dehydrogenases of the deep-sea piezophilic Shewanella benthica and the atmospheric pressure-adapted Shewanella oneidensis. Hamajima Y; Nagae T; Watanabe N; Kato-Yamada Y; Imai T; Kato C Biosci Biotechnol Biochem; 2014; 78(3):469-71. PubMed ID: 25036836 [TBL] [Abstract][Full Text] [Related]
5. Piezo-adapted 3-isopropylmalate dehydrogenase of the obligate piezophile Shewanella benthica DB21MT-2 isolated from the 11,000-m depth of the Mariana Trench. Kasahara R; Sato T; Tamegai H; Kato C Biosci Biotechnol Biochem; 2009 Nov; 73(11):2541-3. PubMed ID: 19897891 [TBL] [Abstract][Full Text] [Related]
6. High-pressure-induced water penetration into 3-isopropylmalate dehydrogenase. Nagae T; Kawamura T; Chavas LM; Niwa K; Hasegawa M; Kato C; Watanabe N Acta Crystallogr D Biol Crystallogr; 2012 Mar; 68(Pt 3):300-9. PubMed ID: 22349232 [TBL] [Abstract][Full Text] [Related]
7. Drugs against Mycobacterium tuberculosis 3-isopropylmalate dehydrogenase can be developed using homologous enzymes as surrogate targets. Graczer E; Bacso A; Konya D; Kazi A; Soos T; Molnar L; Szimler T; Beinrohr L; Szilagyi A; Zavodszky P; Vas M Protein Pept Lett; 2014; 21(12):1295-307. PubMed ID: 24909230 [TBL] [Abstract][Full Text] [Related]
8. Substitutions of coenzyme-binding, nonpolar residues improve the low-temperature activity of thermophilic dehydrogenases. Hayashi S; Akanuma S; Onuki W; Tokunaga C; Yamagishi A Biochemistry; 2011 Oct; 50(40):8583-93. PubMed ID: 21894900 [TBL] [Abstract][Full Text] [Related]
9. Amino acid substitutions in malate dehydrogenases of piezophilic bacteria isolated from intestinal contents of deep-sea fishes retrieved from the abyssal zone. Saito R; Kato C; Nakayama A J Gen Appl Microbiol; 2006 Feb; 52(1):9-19. PubMed ID: 16598154 [TBL] [Abstract][Full Text] [Related]
10. Dual Role of the Active Site Residues of Thermus thermophilus 3-Isopropylmalate Dehydrogenase: Chemical Catalysis and Domain Closure. Gráczer É; Szimler T; Garamszegi A; Konarev PV; Lábas A; Oláh J; Palló A; Svergun DI; Merli A; Závodszky P; Weiss MS; Vas M Biochemistry; 2016 Jan; 55(3):560-74. PubMed ID: 26731489 [TBL] [Abstract][Full Text] [Related]
11. Characterization of two β-decarboxylating dehydrogenases from Sulfolobus acidocaldarius. Takahashi K; Nakanishi F; Tomita T; Akiyama N; Lassak K; Albers SV; Kuzuyama T; Nishiyama M Extremophiles; 2016 Nov; 20(6):843-853. PubMed ID: 27590116 [TBL] [Abstract][Full Text] [Related]
12. The effects of multiple ancestral residues on the Thermus thermophilus 3-isopropylmalate dehydrogenase. Watanabe K; Yamagishi A FEBS Lett; 2006 Jul; 580(16):3867-71. PubMed ID: 16797545 [TBL] [Abstract][Full Text] [Related]
13. Structure and Mechanism of Isopropylmalate Dehydrogenase from Arabidopsis thaliana: INSIGHTS ON LEUCINE AND ALIPHATIC GLUCOSINOLATE BIOSYNTHESIS. Lee SG; Nwumeh R; Jez JM J Biol Chem; 2016 Jun; 291(26):13421-30. PubMed ID: 27137927 [TBL] [Abstract][Full Text] [Related]
14. Crystal structure of 3-isopropylmalate dehydrogenase in complex with NAD(+) and a designed inhibitor. Nango E; Yamamoto T; Kumasaka T; Eguchi T Bioorg Med Chem; 2009 Nov; 17(22):7789-94. PubMed ID: 19833522 [TBL] [Abstract][Full Text] [Related]
16. Cloning and characterization of dihydrofolate reductases from deep-sea bacteria. Murakami C; Ohmae E; Tate S; Gekko K; Nakasone K; Kato C J Biochem; 2010 Apr; 147(4):591-9. PubMed ID: 20040594 [TBL] [Abstract][Full Text] [Related]
17. Designing thermostable proteins: ancestral mutants of 3-isopropylmalate dehydrogenase designed by using a phylogenetic tree. Watanabe K; Ohkuri T; Yokobori S; Yamagishi A J Mol Biol; 2006 Jan; 355(4):664-74. PubMed ID: 16309701 [TBL] [Abstract][Full Text] [Related]
18. Glutamate 270 plays an essential role in K(+)-activation and domain closure of Thermus thermophilus isopropylmalate dehydrogenase. Gráczer É; Palló A; Oláh J; Szimler T; Konarev PV; Svergun DI; Merli A; Závodszky P; Weiss MS; Vas M FEBS Lett; 2015 Jan; 589(2):240-5. PubMed ID: 25497013 [TBL] [Abstract][Full Text] [Related]
19. Atomic level description of the domain closure in a dimeric enzyme: thermus thermophilus 3-isopropylmalate dehydrogenase. Gráczer É; Merli A; Singh RK; Karuppasamy M; Závodszky P; Weiss MS; Vas M Mol Biosyst; 2011 May; 7(5):1646-59. PubMed ID: 21387033 [TBL] [Abstract][Full Text] [Related]
20. The effects of mutations at position 253 on the thermostability of the Bacillus subtilis 3-isopropylmalate dehydrogenase subunit interface. Ohkuri T; Yamagishi A J Biochem; 2007 Jun; 141(6):791-7. PubMed ID: 17389690 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]