These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 26847201)
21. Symmetrical refolding of protein domains and subunits: example of the dimeric two-domain 3-isopropylmalate dehydrogenases. Gráczer E; Varga A; Melnik B; Semisotnov G; Závodszky P; Vas M Biochemistry; 2009 Feb; 48(5):1123-34. PubMed ID: 19154118 [TBL] [Abstract][Full Text] [Related]
22. Stability of cytochromes c' from psychrophilic and piezophilic Shewanella species: implications for complex multiple adaptation to low temperature and high hydrostatic pressure. Suka A; Oki H; Kato Y; Kawahara K; Ohkubo T; Maruno T; Kobayashi Y; Fujii S; Wakai S; Lisdiana L; Sambongi Y Extremophiles; 2019 Mar; 23(2):239-248. PubMed ID: 30689055 [TBL] [Abstract][Full Text] [Related]
23. Deciphering the Dynamics of Non-Covalent Interactions Affecting Thermal Stability of a Protein: Molecular Dynamics Study on Point Mutant of Thermus thermophilus Isopropylmalate Dehydrogenase. Sharma R; Sastry GN PLoS One; 2015; 10(12):e0144294. PubMed ID: 26657745 [TBL] [Abstract][Full Text] [Related]
24. Piezotolerance of the respiratory terminal oxidase activity of the piezophilic Shewanella violacea DSS12 as compared with non-piezophilic Shewanella species. Tamegai H; Ota Y; Haga M; Fujimori H; Kato C; Nogi Y; Kawamoto J; Kurihara T; Sambongi Y Biosci Biotechnol Biochem; 2011; 75(5):919-24. PubMed ID: 21597190 [TBL] [Abstract][Full Text] [Related]
25. Enhancement of the latent 3-isopropylmalate dehydrogenase activity of promiscuous homoisocitrate dehydrogenase by directed evolution. Suzuki Y; Asada K; Miyazaki J; Tomita T; Kuzuyama T; Nishiyama M Biochem J; 2010 Nov; 431(3):401-10. PubMed ID: 20735360 [TBL] [Abstract][Full Text] [Related]
26. Correlation between the optimal growth pressures of four Shewanella species and the stabilities of their cytochromes c 5. Masanari M; Wakai S; Ishida M; Kato C; Sambongi Y Extremophiles; 2014 May; 18(3):617-27. PubMed ID: 24699850 [TBL] [Abstract][Full Text] [Related]
27. Isolation and characterization of the dcw cluster from the piezophilic deep-sea bacterium Shewanella violacea. Ishii A; Nakasone K; Sato T; Wachi M; Sugai M; Nagai K; Kato C J Biochem; 2002 Aug; 132(2):183-8. PubMed ID: 12153713 [TBL] [Abstract][Full Text] [Related]
28. Structural and energetic basis of isopropylmalate dehydrogenase enzyme catalysis. Palló A; Oláh J; Gráczer E; Merli A; Závodszky P; Weiss MS; Vas M FEBS J; 2014 Nov; 281(22):5063-76. PubMed ID: 25211160 [TBL] [Abstract][Full Text] [Related]
29. Enzymic approach to eurythermalism of Alvinella pompejana and its episymbionts. Lee CK; Cary SC; Murray AE; Daniel RM Appl Environ Microbiol; 2008 Feb; 74(3):774-82. PubMed ID: 18083873 [TBL] [Abstract][Full Text] [Related]
30. Regulation of cytochrome c- and quinol oxidases, and piezotolerance of their activities in the deep-sea piezophile Shewanella violacea DSS12 in response to growth conditions. Ohke Y; Sakoda A; Kato C; Sambongi Y; Kawamoto J; Kurihara T; Tamegai H Biosci Biotechnol Biochem; 2013; 77(7):1522-8. PubMed ID: 23832349 [TBL] [Abstract][Full Text] [Related]
31. The biochemical architecture of an ancient adaptive landscape. Lunzer M; Miller SP; Felsheim R; Dean AM Science; 2005 Oct; 310(5747):499-501. PubMed ID: 16239478 [TBL] [Abstract][Full Text] [Related]
32. Novel substrate specificity of designer 3-isopropylmalate dehydrogenase derived from Thermus thermophilus HB8. Fujita M; Tamegai H; Eguchi T; Kakinuma K Biosci Biotechnol Biochem; 2001 Dec; 65(12):2695-700. PubMed ID: 11826966 [TBL] [Abstract][Full Text] [Related]
33. Distinctive gene and protein characteristics of extremely piezophilic Colwellia. Peoples LM; Kyaw TS; Ugalde JA; Mullane KK; Chastain RA; Yayanos AA; Kusube M; Methé BA; Bartlett DH BMC Genomics; 2020 Oct; 21(1):692. PubMed ID: 33023469 [TBL] [Abstract][Full Text] [Related]
34. Direct demonstration of an adaptive constraint. Miller SP; Lunzer M; Dean AM Science; 2006 Oct; 314(5798):458-61. PubMed ID: 17053145 [TBL] [Abstract][Full Text] [Related]
35. Rates of unfolding, rather than refolding, determine thermal stabilities of thermophilic, mesophilic, and psychrotrophic 3-isopropylmalate dehydrogenases. Gráczer E; Varga A; Hajdú I; Melnik B; Szilágyi A; Semisotnov G; Závodszky P; Vas M Biochemistry; 2007 Oct; 46(41):11536-49. PubMed ID: 17887729 [TBL] [Abstract][Full Text] [Related]
36. Comparative study on stabilization mechanism of monomeric cytochrome c Masanari M; Fujii S; Kawahara K; Oki H; Tsujino H; Maruno T; Kobayashi Y; Ohkubo T; Wakai S; Sambongi Y Biosci Biotechnol Biochem; 2016 Dec; 80(12):2365-2370. PubMed ID: 27648635 [TBL] [Abstract][Full Text] [Related]
37. Promiscuous activity of 3-isopropylmalate dehydrogenase produced at physiological level affords Escherichia coli growth on d-malate. Khan MS; Gargiulo S; Soumillion P FEBS Lett; 2020 Aug; 594(15):2421-2430. PubMed ID: 32412093 [TBL] [Abstract][Full Text] [Related]
38. Thermal stability of cytochrome c₅ of pressure-sensitive Shewanella livingstonensis. Masanari M; Wakai S; Tamegai H; Kurihara T; Kato C; Sambongi Y Biosci Biotechnol Biochem; 2011; 75(9):1859-61. PubMed ID: 21897014 [TBL] [Abstract][Full Text] [Related]
39. Essential role of the metal-ion in the IPM-assisted domain closure of 3-isopropylmalate dehydrogenase. Gráczer E; Konarev PV; Szimler T; Bacsó A; Bodonyi A; Svergun DI; Závodszky P; Vas M FEBS Lett; 2011 Oct; 585(20):3297-302. PubMed ID: 21939659 [TBL] [Abstract][Full Text] [Related]
40. Increases of heat shock proteins and their mRNAs at high hydrostatic pressure in a deep-sea piezophilic bacterium, Shewanella violacea. Sato H; Nakasone K; Yoshida T; Kato C; Maruyama T Extremophiles; 2015 Jul; 19(4):751-62. PubMed ID: 25982740 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]