These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. On the origin and evolution of thermophily: reconstruction of functional precambrian enzymes from ancestors of Bacillus. Hobbs JK; Shepherd C; Saul DJ; Demetras NJ; Haaning S; Monk CR; Daniel RM; Arcus VL Mol Biol Evol; 2012 Feb; 29(2):825-35. PubMed ID: 21998276 [TBL] [Abstract][Full Text] [Related]
43. Correlation between phylogenetic structure and function: examples from deep-sea Shewanella. Kato C; Nogi Y FEMS Microbiol Ecol; 2001 May; 35(3):223-230. PubMed ID: 11311432 [TBL] [Abstract][Full Text] [Related]
44. Piezoresponse of the cyo-operon coding for quinol oxidase subunits in a deep-sea piezophilic bacterium, Shewanella violacea. Nakasone K; Yamada M; Qureshi MH; Kato C; Horikoshi K Biosci Biotechnol Biochem; 2001 Mar; 65(3):690-3. PubMed ID: 11330692 [TBL] [Abstract][Full Text] [Related]
45. Amino acid residues that determine functional specificity of NADP- and NAD-dependent isocitrate and isopropylmalate dehydrogenases. Kalinina OV; Gelfand MS Proteins; 2006 Sep; 64(4):1001-9. PubMed ID: 16767773 [TBL] [Abstract][Full Text] [Related]
46. Bacterial adaptation to high pressure: a respiratory system in the deep-sea bacterium Shewanella violacea DSS12. Chikuma S; Kasahara R; Kato C; Tamegai H FEMS Microbiol Lett; 2007 Feb; 267(1):108-12. PubMed ID: 17166225 [TBL] [Abstract][Full Text] [Related]
47. N-terminus GTPase domain of the cytoskeleton protein FtsZ plays a critical role in its adaptation to high hydrostatic pressure. Cui XH; Wei YC; Li XG; Qi XQ; Wu LF; Zhang WJ Front Microbiol; 2024; 15():1441398. PubMed ID: 39220037 [TBL] [Abstract][Full Text] [Related]
48. Evolution. Changing the cofactor diet of an enzyme. Ellington AD; Bull JJ Science; 2005 Oct; 310(5747):454-5. PubMed ID: 16239467 [No Abstract] [Full Text] [Related]
49. Isolation of extremophiles with the detection and retrieval of Shewanella strains in deep-sea sediments from the west Pacific. Wang F; Wang P; Chen M; Xiao X Extremophiles; 2004 Apr; 8(2):165-8. PubMed ID: 15064982 [TBL] [Abstract][Full Text] [Related]
50. Difference in NaCl tolerance of membrane-bound 5'-nucleotidases purified from deep-sea and brackish water Shewanella species. Kuribayashi TA; Fujii S; Masanari M; Yamanaka M; Wakai S; Sambongi Y Extremophiles; 2017 Mar; 21(2):357-368. PubMed ID: 28050644 [TBL] [Abstract][Full Text] [Related]
51. Modeling substrate binding in Thermus thermophilus isopropylmalate dehydrogenase. Zhang T; Koshland DE Protein Sci; 1995 Jan; 4(1):84-92. PubMed ID: 7773180 [TBL] [Abstract][Full Text] [Related]
52. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation. Stein N; Love D; Judd ET; Elliott SJ; Bennett B; Pacheco AA Biochemistry; 2015 Jun; 54(24):3749-58. PubMed ID: 26042961 [TBL] [Abstract][Full Text] [Related]
53. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina. Simpson PJ; Codd R Biochem Biophys Res Commun; 2011 Nov; 414(4):783-8. PubMed ID: 22005463 [TBL] [Abstract][Full Text] [Related]
54. Urea-induced unfolding and conformational stability of 3-isopropylmalate dehydrogenase from the Thermophile thermus thermophilus and its mesophilic counterpart from Escherichia coli. Motono C; Yamagishi A; Oshima T Biochemistry; 1999 Jan; 38(4):1332-7. PubMed ID: 9930995 [TBL] [Abstract][Full Text] [Related]
55. [Features of the enzymes produced by deep-sea microorganisms]. Kato C Seikagaku; 2009 Dec; 81(12):1094-100. PubMed ID: 20077853 [No Abstract] [Full Text] [Related]
56. Isoleucine biosynthesis in Leptospira interrogans serotype lai strain 56601 proceeds via a threonine-independent pathway. Xu H; Zhang Y; Guo X; Ren S; Staempfli AA; Chiao J; Jiang W; Zhao G J Bacteriol; 2004 Aug; 186(16):5400-9. PubMed ID: 15292141 [TBL] [Abstract][Full Text] [Related]
58. Characterization of the mechanism of the NADH-dependent polysulfide reductase (Npsr) from Shewanella loihica PV-4: formation of a productive NADH-enzyme complex and its role in the general mechanism of NADH and FAD-dependent enzymes. Lee KH; Humbarger S; Bahnvadia R; Sazinsky MH; Crane EJ Biochim Biophys Acta; 2014 Sep; 1844(9):1708-17. PubMed ID: 24981797 [TBL] [Abstract][Full Text] [Related]
59. The narQP genes for a two-component regulatory system from the deep-sea bacterium Shewanella violacea DSS12. Tamegai H; Chikuma S; Ishii M; Nakasone K; Kato C DNA Seq; 2008 Jun; 19(3):308-12. PubMed ID: 17852338 [TBL] [Abstract][Full Text] [Related]
60. Protein evolution in deep sea bacteria: an analysis of amino acids substitution rates. Campanaro S; Treu L; Valle G BMC Evol Biol; 2008 Nov; 8():313. PubMed ID: 19014525 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]