These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Comprehensive analysis of two Shank3 and the Cacna1c mouse models of autism spectrum disorder. Kabitzke PA; Brunner D; He D; Fazio PA; Cox K; Sutphen J; Thiede L; Sabath E; Hanania T; Alexandrov V; Rasmusson R; Spooren W; Ghosh A; Feliciano P; Biemans B; Benedetti M; Clayton AL Genes Brain Behav; 2018 Jan; 17(1):4-22. PubMed ID: 28753255 [TBL] [Abstract][Full Text] [Related]
5. Pharmacological enhancement of mGlu5 receptors rescues behavioral deficits in SHANK3 knock-out mice. Vicidomini C; Ponzoni L; Lim D; Schmeisser MJ; Reim D; Morello N; Orellana D; Tozzi A; Durante V; Scalmani P; Mantegazza M; Genazzani AA; Giustetto M; Sala M; Calabresi P; Boeckers TM; Sala C; Verpelli C Mol Psychiatry; 2017 May; 22(5):689-702. PubMed ID: 27021819 [TBL] [Abstract][Full Text] [Related]
6. SHANK3 and IGF1 restore synaptic deficits in neurons from 22q13 deletion syndrome patients. Shcheglovitov A; Shcheglovitova O; Yazawa M; Portmann T; Shu R; Sebastiano V; Krawisz A; Froehlich W; Bernstein JA; Hallmayer JF; Dolmetsch RE Nature; 2013 Nov; 503(7475):267-71. PubMed ID: 24132240 [TBL] [Abstract][Full Text] [Related]
7. Zinc deficiency and low enterocyte zinc transporter expression in human patients with autism related mutations in SHANK3. Pfaender S; Sauer AK; Hagmeyer S; Mangus K; Linta L; Liebau S; Bockmann J; Huguet G; Bourgeron T; Boeckers TM; Grabrucker AM Sci Rep; 2017 Mar; 7():45190. PubMed ID: 28345660 [TBL] [Abstract][Full Text] [Related]
8. Clk2 and B56β mediate insulin-regulated assembly of the PP2A phosphatase holoenzyme complex on Akt. Rodgers JT; Vogel RO; Puigserver P Mol Cell; 2011 Feb; 41(4):471-9. PubMed ID: 21329884 [TBL] [Abstract][Full Text] [Related]
9. Increased rates of cerebral protein synthesis in Shank3 knockout mice: Implications for a link between synaptic protein deficit and dysregulated protein synthesis in autism spectrum disorder/intellectual disability. Torossian A; Saré RM; Loutaev I; Smith CB Neurobiol Dis; 2021 Jan; 148():105213. PubMed ID: 33276083 [TBL] [Abstract][Full Text] [Related]
10. Autism-associated SHANK3 haploinsufficiency causes Ih channelopathy in human neurons. Yi F; Danko T; Botelho SC; Patzke C; Pak C; Wernig M; Südhof TC Science; 2016 May; 352(6286):aaf2669. PubMed ID: 26966193 [TBL] [Abstract][Full Text] [Related]
11. Phelan-McDermid Syndrome and SHANK3: Implications for Treatment. Costales JL; Kolevzon A Neurotherapeutics; 2015 Jul; 12(3):620-30. PubMed ID: 25894671 [TBL] [Abstract][Full Text] [Related]
12. Behavioral Phenotyping of an Improved Mouse Model of Phelan-McDermid Syndrome with a Complete Deletion of the Drapeau E; Riad M; Kajiwara Y; Buxbaum JD eNeuro; 2018; 5(3):. PubMed ID: 30302388 [TBL] [Abstract][Full Text] [Related]
13. Disrupted extracellular matrix and cell cycle genes in autism-associated Shank3 deficiency are targeted by lithium. Ioannidis V; Pandey R; Bauer HF; Schön M; Bockmann J; Boeckers TM; Lutz AK Mol Psychiatry; 2024 Mar; 29(3):704-717. PubMed ID: 38123724 [TBL] [Abstract][Full Text] [Related]
14. Pharmacological modulation of developmental and synaptic phenotypes in human SHANK3 deficient stem cell-derived neuronal models. Thibaudeau A; Schmitt K; François L; Chatrousse L; Hoffmann D; Cousin L; Weiss A; Vuidel A; Jacob CB; Sommer P; Benchoua A; Wilbertz JH Transl Psychiatry; 2024 Jun; 14(1):249. PubMed ID: 38858349 [TBL] [Abstract][Full Text] [Related]
15. Alpha-synuclein overexpression negatively regulates insulin receptor substrate 1 by activating mTORC1/S6K1 signaling. Gao S; Duan C; Gao G; Wang X; Yang H Int J Biochem Cell Biol; 2015 Jul; 64():25-33. PubMed ID: 25813876 [TBL] [Abstract][Full Text] [Related]
16. X-ray Structures and Feasibility Assessment of CLK2 Inhibitors for Phelan-McDermid Syndrome. Kallen J; Bergsdorf C; Arnaud B; Bernhard M; Brichet M; Cobos-Correa A; Elhajouji A; Freuler F; Galimberti I; Guibourdenche C; Haenni S; Holzinger S; Hunziker J; Izaac A; Kaufmann M; Leder L; Martus HJ; von Matt P; Polyakov V; Roethlisberger P; Roma G; Stiefl N; Uteng M; Lerchner A ChemMedChem; 2018 Sep; 13(18):1997-2007. PubMed ID: 29985556 [TBL] [Abstract][Full Text] [Related]
17. Phelan McDermid Syndrome: From Genetic Discoveries to Animal Models and Treatment. Harony-Nicolas H; De Rubeis S; Kolevzon A; Buxbaum JD J Child Neurol; 2015 Dec; 30(14):1861-70. PubMed ID: 26350728 [TBL] [Abstract][Full Text] [Related]
18. A positive role of mammalian Tip41-like protein, TIPRL, in the amino-acid dependent mTORC1-signaling pathway through interaction with PP2A. Nakashima A; Tanimura-Ito K; Oshiro N; Eguchi S; Miyamoto T; Momonami A; Kamada S; Yonezawa K; Kikkawa U FEBS Lett; 2013 Sep; 587(18):2924-9. PubMed ID: 23892082 [TBL] [Abstract][Full Text] [Related]
19. Zinc deficiency and supplementation in autism spectrum disorder and Phelan-McDermid syndrome. Alsufiani HM; Alkhanbashi AS; Laswad NAB; Bakhadher KK; Alghamdi SA; Tayeb HO; Tarazi FI J Neurosci Res; 2022 Apr; 100(4):970-978. PubMed ID: 35114017 [TBL] [Abstract][Full Text] [Related]
20. Touchscreen learning deficits and normal social approach behavior in the Shank3B model of Phelan-McDermid Syndrome and autism. Copping NA; Berg EL; Foley GM; Schaffler MD; Onaga BL; Buscher N; Silverman JL; Yang M Neuroscience; 2017 Mar; 345():155-165. PubMed ID: 27189882 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]