BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

283 related articles for article (PubMed ID: 26847611)

  • 1. Neuron specific enolase: a promising therapeutic target in acute spinal cord injury.
    Haque A; Ray SK; Cox A; Banik NL
    Metab Brain Dis; 2016 Jun; 31(3):487-95. PubMed ID: 26847611
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Targeting Enolase in Reducing Secondary Damage in Acute Spinal Cord Injury in Rats.
    Haque A; Capone M; Matzelle D; Cox A; Banik NL
    Neurochem Res; 2017 Oct; 42(10):2777-2787. PubMed ID: 28508172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal-spatial expression of ENOLASE after acute spinal cord injury in adult rats.
    Li M; Wen H; Yan Z; Ding T; Long L; Qin H; Wang H; Zhang F
    Neurosci Res; 2014 Feb; 79():76-82. PubMed ID: 24321872
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of enolase activation to promote neural protection and regeneration in spinal cord injury.
    McCoy HM; Polcyn R; Banik NL; Haque A
    Neural Regen Res; 2023 Jul; 18(7):1457-1462. PubMed ID: 36571342
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New Insights into the Role of Neuron-Specific Enolase in Neuro-Inflammation, Neurodegeneration, and Neuroprotection.
    Haque A; Polcyn R; Matzelle D; Banik NL
    Brain Sci; 2018 Feb; 8(2):. PubMed ID: 29463007
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ghrelin alleviates spinal cord injury in rats via its anti-inflammatory effects.
    Erşahın M; Toklu HZ; Erzık C; Akakin D; Tetık S; Sener G; Yeğen BC
    Turk Neurosurg; 2011; 21(4):599-605. PubMed ID: 22194122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implications of enolase in the RANKL-mediated osteoclast activity following spinal cord injury.
    Shams R; Banik NL; Haque A
    Biocell; 2021 Sep; 45(6):1453-1457. PubMed ID: 34539043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Establishment of a spinal cord injury model in adult rats by an electrocircuit-controlled impacting device and its pathological observations.
    Wang Y; Liu CF; Wang QP; Gao H; Na HR; Yu RT
    Cell Biochem Biophys; 2014 Jun; 69(2):333-40. PubMed ID: 24338564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enolase inhibition alters metabolic hormones and inflammatory factors to promote neuroprotection in spinal cord injury.
    Polcyn R; Capone M; Matzelle D; Hossain A; Chandran R; Banik NL; Haque A
    Neurochem Int; 2020 Oct; 139():104788. PubMed ID: 32650031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matrix metalloproteinases and their inhibitors in human traumatic spinal cord injury.
    Buss A; Pech K; Kakulas BA; Martin D; Schoenen J; Noth J; Brook GA
    BMC Neurol; 2007 Jun; 7():17. PubMed ID: 17594482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydroxyl radicals generated in the rat spinal cord at the level produced by impact injury induce cell death by necrosis and apoptosis: protection by a metalloporphyrin.
    Bao F; Liu D
    Neuroscience; 2004; 126(2):285-95. PubMed ID: 15207346
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The P2Y-like receptor GPR17 as a sensor of damage and a new potential target in spinal cord injury.
    Ceruti S; Villa G; Genovese T; Mazzon E; Longhi R; Rosa P; Bramanti P; Cuzzocrea S; Abbracchio MP
    Brain; 2009 Aug; 132(Pt 8):2206-18. PubMed ID: 19528093
    [TBL] [Abstract][Full Text] [Related]  

  • 13. ATP-mediated protein kinase B Akt/mammalian target of rapamycin mTOR/p70 ribosomal S6 protein p70S6 kinase signaling pathway activation promotes improvement of locomotor function after spinal cord injury in rats.
    Hu LY; Sun ZG; Wen YM; Cheng GZ; Wang SL; Zhao HB; Zhang XR
    Neuroscience; 2010 Sep; 169(3):1046-62. PubMed ID: 20678995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats.
    Tian DS; Xie MJ; Yu ZY; Zhang Q; Wang YH; Chen B; Chen C; Wang W
    Brain Res; 2007 Mar; 1135(1):177-85. PubMed ID: 17188663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reactive astrocytes undergo M1 microglia/macrohpages-induced necroptosis in spinal cord injury.
    Fan H; Zhang K; Shan L; Kuang F; Chen K; Zhu K; Ma H; Ju G; Wang YZ
    Mol Neurodegener; 2016 Feb; 11():14. PubMed ID: 26842216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multifunctional neuron-specific enolase: its role in lung diseases.
    Xu CM; Luo YL; Li S; Li ZX; Jiang L; Zhang GX; Owusu L; Chen HL
    Biosci Rep; 2019 Nov; 39(11):. PubMed ID: 31642468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuron-Specific Enolase as a Biomarker: Biochemical and Clinical Aspects.
    Isgrò MA; Bottoni P; Scatena R
    Adv Exp Med Biol; 2015; 867():125-43. PubMed ID: 26530364
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Diagnostic Value of Serum Levels of GFAP, pNF-H, and NSE Compared With Clinical Findings in Severity Assessment of Human Traumatic Spinal Cord Injury.
    Ahadi R; Khodagholi F; Daneshi A; Vafaei A; Mafi AA; Jorjani M
    Spine (Phila Pa 1976); 2015 Jul; 40(14):E823-30. PubMed ID: 25341992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cellular inflammatory response in human spinal cords after injury.
    Fleming JC; Norenberg MD; Ramsay DA; Dekaban GA; Marcillo AE; Saenz AD; Pasquale-Styles M; Dietrich WD; Weaver LC
    Brain; 2006 Dec; 129(Pt 12):3249-69. PubMed ID: 17071951
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of neural stem cells modified with hypoxia/neuron-specific VEGF expression system for spinal cord injury.
    Yun Y; Oh J; Kim Y; Kim G; Lee M; Ha Y
    Gene Ther; 2018 Jan; 25(1):27-38. PubMed ID: 29155421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.