BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26847869)

  • 1. Investigation of the Transition from Local Anodic Oxidation to Electrical Breakdown During Nanoscale Atomic Force Microscopy Electric Lithography of Highly Oriented Pyrolytic Graphite.
    Yang Y; Lin J
    Microsc Microanal; 2016 Apr; 22(2):432-9. PubMed ID: 26847869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the bias voltage effect and the force effect during the nanoscale AFM electric lithography on the copper thin film surface.
    Yang Y; Lin J
    Scanning; 2016 Sep; 38(5):412-420. PubMed ID: 26599706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct etching of nano/microscale patterns with both few-layer graphene and high-depth graphite structures by the raster STM electric lithography in the ambient conditions.
    Yang Y; Xu Y
    J Microsc; 2023 Oct; 292(1):37-46. PubMed ID: 37681465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Single-Atomic-Layer Lithography on Highly Oriented Pyrolytic Graphite Surfaces Using AFM-Based Electrochemical Etching.
    Han W; Mathew PT; Kolagatla S; Rodriguez BJ; Fang F
    Nanomanuf Metrol; 2022; 5(1):32-38. PubMed ID: 35402782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local anodic oxidation by AFM tip developed for novel semiconductor nanodevices.
    Cambel V; Martaus J; Soltýs J; Kúdela R; Gregusová D
    Ultramicroscopy; 2008 Sep; 108(10):1021-4. PubMed ID: 18565663
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Boosting the local anodic oxidation of silicon through carbon nanofiber atomic force microscopy probes.
    Rius G; Lorenzoni M; Matsui S; Tanemura M; Perez-Murano F
    Beilstein J Nanotechnol; 2015; 6():215-22. PubMed ID: 25671165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. AFM lithography of aluminum for fabrication of nanomechanical systems.
    Davis ZJ; Abadal G; Hansen O; Borisé X; Barniol N; Pérez-Murano F; Boisen A
    Ultramicroscopy; 2003; 97(1-4):467-72. PubMed ID: 12801703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanocarbon-scanning probe microscopy synergy: fundamental aspects to nanoscale devices.
    Kurra N; Reifenberger RG; Kulkarni GU
    ACS Appl Mater Interfaces; 2014 May; 6(9):6147-63. PubMed ID: 24697666
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoscale crystallization of phase change Ge2Sb2Te5 film with AFM lithography.
    Kim J
    Scanning; 2010; 32(5):320-6. PubMed ID: 20853405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication and adhesion of biomimetic nanotextures fabricated by local oxidation nanolithography.
    Mo Y; Bai M
    J Colloid Interface Sci; 2009 May; 333(1):304-9. PubMed ID: 19215935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Charge storage in mesoscopic graphitic islands fabricated using AFM bias lithography.
    Kurra N; Prakash G; Basavaraja S; Fisher TS; Kulkarni GU; Reifenberger RG
    Nanotechnology; 2011 Jun; 22(24):245302. PubMed ID: 21508457
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable formation of nanoscale patterns on TiO2 by conductive-AFM nanolithography.
    Garipcan B; Winters J; Atchison JS; Cathell MD; Schiffman JD; Leaffer OD; Nonnenmann SS; Schauer CL; Pişkin E; Nabet B; Spanier JE
    Langmuir; 2008 Aug; 24(16):8944-9. PubMed ID: 18646874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The possibility of multi-layer nanofabrication via atomic force microscope-based pulse electrochemical nanopatterning.
    Kim US; Morita N; Lee DW; Jun M; Park JW
    Nanotechnology; 2017 May; 28(19):195302. PubMed ID: 28346217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Degeneracy and instability of nanocontacts between conductive tips and hydrogenated nanocrystalline Si surfaces in conductive atomic force microscopy.
    Cavalcoli D; Rossi M; Tomasi A; Cavallini A
    Nanotechnology; 2009 Jan; 20(4):045702. PubMed ID: 19417328
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic force microscopy based manipulation of graphene using dynamic plowing lithography.
    Vasić B; Kratzer M; Matković A; Nevosad A; Ralević U; Jovanović D; Ganser C; Teichert C; Gajić R
    Nanotechnology; 2013 Jan; 24(1):015303. PubMed ID: 23220750
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probe-induced native oxide decomposition and localized oxidation on 6H-SiC (0001) surface: an atomic force microscopy investigation.
    Xie XN; Chung HJ; Xu H; Xu X; Sow CH; Wee AT
    J Am Chem Soc; 2004 Jun; 126(24):7665-75. PubMed ID: 15198614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The study on the atomic force microscopy base nanoscale electrical discharge machining.
    Huang JC; Chen CM
    Scanning; 2012; 34(3):191-9. PubMed ID: 21898457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy (C-AFM).
    Alexeev A; Loos J; Koetse MM
    Ultramicroscopy; 2006 Feb; 106(3):191-9. PubMed ID: 16125322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SiC Doping Impact during Conducting AFM under Ambient Atmosphere.
    Villeneuve-Faure C; Boumaarouf A; Shah V; Gammon PM; Lüders U; Coq Germanicus R
    Materials (Basel); 2023 Aug; 16(15):. PubMed ID: 37570104
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct nanofabrication of copper on silicon substrate by electrochemical atomic force microscope lithography.
    Kwon G; Lee H
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7076-9. PubMed ID: 19908731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.