These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26848051)

  • 1. Measuring elemental time and duty cycle using automated video processing.
    Akkas O; Lee CH; Hu YH; Yen TY; Radwin RG
    Ergonomics; 2016 Nov; 59(11):1514-1525. PubMed ID: 26848051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measuring exertion time, duty cycle and hand activity level for industrial tasks using computer vision.
    Akkas O; Lee CH; Hu YH; Harris Adamson C; Rempel D; Radwin RG
    Ergonomics; 2017 Dec; 60(12):1730-1738. PubMed ID: 28640656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Automated video exposure assessment of repetitive hand activity level for a load transfer task.
    Chen CH; Hu YH; Yen TY; Radwin RG
    Hum Factors; 2013 Apr; 55(2):298-308. PubMed ID: 23691826
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The accuracy of conventional 2D video for quantifying upper limb kinematics in repetitive motion occupational tasks.
    Chen CH; Azari DP; Hu YH; Lindstrom MJ; Thelen D; Yen TY; Radwin RG
    Ergonomics; 2015; 58(12):2057-66. PubMed ID: 25978764
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visualizing stressful aspects of repetitive motion tasks and opportunities for ergonomic improvements using computer vision.
    Greene RL; Azari DP; Hu YH; Radwin RG
    Appl Ergon; 2017 Nov; 65():461-472. PubMed ID: 28284701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting Sagittal Plane Lifting Postures From Image Bounding Box Dimensions.
    Greene RL; Hu YH; Difranco N; Wang X; Lu ML; Bao S; Lin JH; Radwin RG
    Hum Factors; 2019 Feb; 61(1):64-77. PubMed ID: 30091947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A hand speed-duty cycle equation for estimating the ACGIH hand activity level rating.
    Akkas O; Azari DP; Chen CH; Hu YH; Ulin SS; Armstrong TJ; Rempel D; Radwin RG
    Ergonomics; 2015; 58(2):184-94. PubMed ID: 25343278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the observer, single-frame video and computer vision hand activity levels.
    Radwin RG; Hu YH; Akkas O; Bao S; Harris-Adamson C; Lin JH; Meyers AR; Rempel D
    Ergonomics; 2023 Aug; 66(8):1132-1141. PubMed ID: 36227226
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A stochastic algorithm for automatic hand pose and motion estimation.
    Cordella F; Corato FD; Siciliano B; Zollo L
    Med Biol Eng Comput; 2017 Dec; 55(12):2197-2208. PubMed ID: 28593507
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A marker-less technique for measuring kinematics in the operating room.
    Frasier LL; Azari DP; Ma Y; Pavuluri Quamme SR; Radwin RG; Pugh CM; Yen TY; Chen CH; Greenberg CC
    Surgery; 2016 Nov; 160(5):1400-1413. PubMed ID: 27342198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A frequency-duty cycle equation for the ACGIH hand activity level.
    Radwin RG; Azari DP; Lindstrom MJ; Ulin SS; Armstrong TJ; Rempel D
    Ergonomics; 2015; 58(2):173-83. PubMed ID: 25343340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A digital video system for the automated measurement of repetitive joint motion.
    Lu C; Ferrier NJ
    IEEE Trans Inf Technol Biomed; 2004 Sep; 8(3):399-404. PubMed ID: 15484445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative underwater 3D motion analysis using submerged video cameras: accuracy analysis and trajectory reconstruction.
    Silvatti AP; Cerveri P; Telles T; Dias FA; Baroni G; Barros RM
    Comput Methods Biomech Biomed Engin; 2013; 16(11):1240-8. PubMed ID: 22435960
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Surgical Technical Skill Using Expert Assessment for Automated Computer Rating.
    Azari DP; Frasier LL; Quamme SRP; Greenberg CC; Pugh CM; Greenberg JA; Radwin RG
    Ann Surg; 2019 Mar; 269(3):574-581. PubMed ID: 28885509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differences in multi-joint kinematic patterns of repetitive hammering in healthy, fatigued and shoulder-injured individuals.
    Côté JN; Raymond D; Mathieu PA; Feldman AG; Levin MF
    Clin Biomech (Bristol, Avon); 2005 Jul; 20(6):581-90. PubMed ID: 15927734
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interaction Detection in Egocentric Video: Toward a Novel Outcome Measure for Upper Extremity Function.
    Likitlersuang J; Zariffa J
    IEEE J Biomed Health Inform; 2018 Mar; 22(2):561-569. PubMed ID: 28114045
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A solidification procedure to facilitate kinematic analyses based on video system data.
    Chèze L; Fregly BJ; Dimnet J
    J Biomech; 1995 Jul; 28(7):879-84. PubMed ID: 7657687
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The size and structure of arm movement variability decreased with work pace in a standardised repetitive precision task.
    Srinivasan D; Samani A; Mathiassen SE; Madeleine P
    Ergonomics; 2015; 58(1):128-39. PubMed ID: 25216404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinematic and kinetic comparisons of elite and well-trained sprinters during sprint start.
    Slawinski J; Bonnefoy A; Levêque JM; Ontanon G; Riquet A; Dumas R; Chèze L
    J Strength Cond Res; 2010 Apr; 24(4):896-905. PubMed ID: 19935105
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robustness of neuroprosthetic decoding algorithms.
    Serruya M; Hatsopoulos N; Fellows M; Paninski L; Donoghue J
    Biol Cybern; 2003 Mar; 88(3):219-28. PubMed ID: 12647229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.