These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 26848553)

  • 21. Fluorinated Hyaluronic Acid Encapsulated Perfluorocarbon Nanoparticles as Tumor-Targeted Oxygen Carriers to Enhance Radiotherapy.
    Wang W; Wang X; Tao F; Hu K; Zhang J; Wu J; You L; Zhao W
    Mol Pharm; 2022 Nov; 19(11):3948-3958. PubMed ID: 36194775
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of cell radiation sensitivity by pegylated gold nanoparticles.
    Liu CJ; Wang CH; Chen ST; Chen HH; Leng WH; Chien CC; Wang CL; Kempson IM; Hwu Y; Lai TC; Hsiao M; Yang CS; Chen YJ; Margaritondo G
    Phys Med Biol; 2010 Feb; 55(4):931-45. PubMed ID: 20090183
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Bi
    Wang S; Wang H; Song C; Li Z; Wang Z; Xu H; Yu W; Peng C; Li M; Chen Z
    Nanoscale; 2019 Aug; 11(32):15326-15338. PubMed ID: 31386732
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Preparation of near-infrared light absorbing gold nanoparticles using polyethylene glycol-attached dendrimers.
    Kojima C; Umeda Y; Harada A; Kono K
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):648-51. PubMed ID: 20801621
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Polymeric near-infrared absorbing dendritic nanogels for efficient in vivo photothermal cancer therapy.
    Molina M; Wedepohl S; Calderón M
    Nanoscale; 2016 Mar; 8(11):5852-6. PubMed ID: 26931077
    [TBL] [Abstract][Full Text] [Related]  

  • 26. CD47-targeted bismuth selenide nanoparticles actualize improved photothermal therapy by increasing macrophage phagocytosis of cancer cells.
    Guo Z; Liu Y; Zhou H; Zheng K; Wang D; Jia M; Xu P; Ma K; Cui C; Wang L
    Colloids Surf B Biointerfaces; 2019 Dec; 184():110546. PubMed ID: 31606701
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Doxorubicin-conjugated CuS nanoparticles for efficient synergistic therapy triggered by near-infrared light.
    Bi H; Dai Y; Lv R; Zhong C; He F; Gai S; Gulzar A; Yang G; Yang P
    Dalton Trans; 2016 Mar; 45(12):5101-10. PubMed ID: 26883928
    [TBL] [Abstract][Full Text] [Related]  

  • 28. NIR-II Driven Plasmon-Enhanced Catalysis for a Timely Supply of Oxygen to Overcome Hypoxia-Induced Radiotherapy Tolerance.
    Yang Y; Chen M; Wang B; Wang P; Liu Y; Zhao Y; Li K; Song G; Zhang XB; Tan W
    Angew Chem Int Ed Engl; 2019 Oct; 58(42):15069-15075. PubMed ID: 31429172
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced radiation therapy with multilayer microdisks containing radiosensitizing gold nanoparticles.
    Zhang P; Qiao Y; Xia J; Guan J; Ma L; Su M
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4518-24. PubMed ID: 25679345
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Topotecan-loaded mesoporous silica nanoparticles for reversing multi-drug resistance by synergetic chemoradiotherapy.
    Shen B; Zhao K; Ma S; Yuan D; Bai Y
    Chem Asian J; 2015 Feb; 10(2):344-8. PubMed ID: 25413970
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dual-function nanosystem for synergetic cancer chemo-/radiotherapy through ROS-mediated signaling pathways.
    He L; Lai H; Chen T
    Biomaterials; 2015 May; 51():30-42. PubMed ID: 25770995
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Perfluorocarbon-Encapsulated PLGA-PEG Emulsions as Enhancement Agents for Highly Efficient Reoxygenation to Cell and Organism.
    Yao Y; Zhang M; Liu T; Zhou J; Gao Y; Wen Z; Guan J; Zhu J; Lin Z; He D
    ACS Appl Mater Interfaces; 2015 Aug; 7(33):18369-78. PubMed ID: 26222132
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topological insulator bismuth selenide as a theranostic platform for simultaneous cancer imaging and therapy.
    Li J; Jiang F; Yang B; Song XR; Liu Y; Yang HH; Cao DR; Shi WR; Chen GN
    Sci Rep; 2013; 3():1998. PubMed ID: 23770650
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MnFe
    Ding B; Shao S; Xiao H; Sun C; Cai X; Jiang F; Zhao X; Ma P; Lin J
    Nanoscale; 2019 Aug; 11(31):14654-14667. PubMed ID: 31355836
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Perfluorocarbon nanoparticles enhance reactive oxygen levels and tumour growth inhibition in photodynamic therapy.
    Cheng Y; Cheng H; Jiang C; Qiu X; Wang K; Huan W; Yuan A; Wu J; Hu Y
    Nat Commun; 2015 Nov; 6():8785. PubMed ID: 26525216
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photothermal ablation cancer therapy using homogeneous CsxWO3 nanorods with broad near-infra-red absorption.
    Guo C; Yin S; Yu H; Liu S; Dong Q; Goto T; Zhang Z; Li Y; Sato T
    Nanoscale; 2013 Jul; 5(14):6469-78. PubMed ID: 23743996
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hollow PtCo alloy nanospheres as a high-
    Li S; Sun W; Luo Y; Gao Y; Jiang X; Yuan C; Han L; Cao K; Gong Y; Xie C
    J Mater Chem B; 2021 Jun; 9(23):4643-4653. PubMed ID: 34009230
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MSOT/CT/MR imaging-guided and hypoxia-maneuvered oxygen self-supply radiotherapy based on one-pot MnO
    Wang S; You Q; Wang J; Song Y; Cheng Y; Wang Y; Yang S; Yang L; Li P; Lu Q; Yu M; Li N
    Nanoscale; 2019 Mar; 11(13):6270-6284. PubMed ID: 30882830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo.
    Li Y; Yun KH; Lee H; Goh SH; Suh YG; Choi Y
    Biomaterials; 2019 Mar; 197():12-19. PubMed ID: 30623793
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tumor targeted, stealthy and degradable bismuth nanoparticles for enhanced X-ray radiation therapy of breast cancer.
    Deng J; Xu S; Hu W; Xun X; Zheng L; Su M
    Biomaterials; 2018 Feb; 154():24-33. PubMed ID: 29120816
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.